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November 12, 2019  

Mark L. Waller 

Professor and Acting Department Head 

Department of Agricultural Economics  

2124 TAMU 

College Station, Texas 77843-2124 

 

Attached please find my application for the position of Assistant Professor in Agricultural 

Marketing and Quantitative Analysis at TAMU. I received my PhD in Economics from MIT in 

June 2016 and am a Postdoctoral Scholar at the Energy and Environment Lab (E&E Lab) at the 

University of Chicago.  
 

I have enclosed a copy of my job market paper, “Hassles and Environmental Health Screenings: 

Evidence from Lead Tests in Illinois”. Current lead poisoning prevention programs rely on 

children’s visits to the doctor to identify homes with lead hazards, an ordeal for families. I combine 

evidence from multiple large administrative datasets with insights from a theoretical model to 

assess the impacts of ordeals on lead poisoning prevention policies. I exploit doctors’ openings 

and closings and find that travel costs decrease screening and do not improve targeting. Thus, 

lowering travel costs could increase detection rates and lower social costs of lead exposure. 

 

I have also enclosed a copy of a paper I co-authored with members of the E&E Lab, “Enforcement 

and Deterrence with Certain Detection: An Experiment in Water Conservation Policy”. This paper 

uses an experiment to study the impact of a technology that allows perfect violation detection and 

automated enforcement of water conservation regulations. We find that automated enforcement 

improves compliance, decreasing the pressure on the water utility to develop costly new supply 

sources. Still, fines increased under automated enforcement causing a surge in complaints. These 

findings highlight that perfect enforcement might not be politically feasible. 

 

I am excited to be part of a vibrant environment like the Department of Agricultural Economics at 

TAMU. I genuinely appreciate your consideration. I have arranged for letters of reference by 

Professors Michael Greenstone, Joshua Angrist, and Benjamin Olken. If you require any additional 

information, please do not hesitate to contact me. I look forward to hearing from you. 

  

Sincerely yours, 

Ludovica Gazze  

Postdoctoral Scholar, University of Chicago Energy and Environment Lab  
http://home.uchicago.edu/~lgazze/ 

http://home.uchicago.edu/~lgazze/
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J-PAL: “Using Remote Sensing to Reduce Vehicle Emissions in 

California” with Fiona Burlig, Michael Greenstone, Olga 
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HUD: “National Evaluation of the Housing and Neighborhood 
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SELECTED 

RESEARCH 

PAPERS 

“Hassles and Environmental Health Screenings: Evidence from Lead Tests 

in Illinois” (Job Market Paper) 

Lead paint, a harmful environmental hazard, can still be found in millions of 

homes in the United States. Due to high inspection and clean-up costs, prevention 

programs target intervention to the relatively few homes where small children test 

positive for lead poisoning. Because children have to visit a doctor to get tested, 

only households willing to undergo this hassle self-select into screening. Is self-

selection an effective targeting mechanism? I study screening take-up by 

analyzing geocoded 2001-2016 lead screening data on 2 million Illinois children. 

My empirical strategy exploits variation in travel costs due to healthcare 

providers' openings and closings. I find that travel costs reduce screening among 

low- and high-risk households alike, without improving targeting. Consistent 

with low poisoning rates, high-risk households are only willing to pay $4-29 more 

than low-risk households for screening. Despite poor targeting, screening 

incentives may be cost-effective because of the externalities of lead exposure. 

  

“The Price and Allocation Effects of Targeted Mandates: Evidence from 

Lead Hazards” (R&R Journal of Urban Economics) 

Several states require owners to mitigate lead hazards in old houses with children 

present. I estimate the mandates’ effects on housing markets. My empirical 

strategy exploits differences by state, year, and housing vintage. The mandates 

decrease the prices of old houses by 7.1 percent, acting as a large tax on owners. 

Moreover, families with children become 14.6 percent less likely to live in old 

houses. Increases in rents for family-friendly houses suggest that the mandates 

have important distributional consequences. These findings are relevant for 

evaluating similar mandates such as healthy home standards. 

 

“Enforcement and Deterrence with Certain Detection: An Experiment in 

Water Conservation Policy” with Oliver Browne, Michael Greenstone, Olga 

Rostapshova 

New technologies are poised to transform regulatory enforcement by automating 

costly inspections and driving violation detection rates to 100%. We conduct a 

randomized field experiment to evaluate the adoption of smart meters for 

enforcing outdoor water-use regulations in a major US city facing water shortage. 

We randomize 88,905 households into 12 groups varying enforcement methods 

(automated or visual inspection) and fine levels. Automated enforcement 

decreases water use by 3% and violations by 17%. However, due to imperfect 

deterrence, fines increase by 13,800% and customer service calls increase by 

545%, leading to backlash that might make maximum enforcement politically 

untenable.  

  

“Estimating Health Damages from Lead Pipe Disturbances: Evidence from 

Chicago” with Jennifer Heissel 

Water utilities in the United States lose substantial water due to leaks in old water 

infrastructure. Lead in old service lines that connect homes to water mains may 

contaminate drinking water. One potential aggravating factor is construction on 

mains, which shakes the service lines and may remove the protective coating 

formed by natural sediments. We exploit over 2,500 water main replacements in 
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Chicago and a unique combination of geocoded data sources to estimate the 

effects of pipe maintenance on drinking water quality and children’s blood levels. 

By comparing tests in homes in the same neighborhood but at different distances 

from replaced mains before and after replacement, we find no evidence that water 

main replacement affects water quality or children’s lead levels. 

 

“Correlates of Childhood Lead Exposure at Different Intervention 

Thresholds: A Geospatial Analysis of Illinois Blood Lead Data 2001-2016” 
with Ali Abbasi, Bridget Pals (R&R American Journal of Public Health) 

The threshold defining elevated blood lead levels (EBLLs) has decreased over 

time. What are the consequences for optimal lead screening policy? We link birth 

records from 2.37 Illinois children to 4.19 million lead testing records and data 

on housing age, industrial emissions, and roads. We use multinomial logistic 

regression to determine predictors of EBLL at different thresholds, controlling 

for zip code random effects. While pre-1930 housing is associated with over 2-

fold increased risk of EBLL at all thresholds, housing built in 1951-1978 is only 

associated with increased risk of EBLL at the 5μg/dL threshold. These findings 

suggest screening guidelines may need updating with the new threshold. 

 

SELECTED 

RESEARCH IN 

PROGRESS 

 

“On Peer Effects and Pollution: Does Exposure to Lead Affect Everyone in 

the Classroom?” with Claudia Persico, Sandra Spirovska 

Lead harms children’s cognitive development and behavior. We know 

substantially less about how one child’s lead exposure might affect that child’s 

peers in the classroom. We examine this overlooked social cost of lead exposure: 

the externality of lead exposure on peers’ achievement and behavior in school. 

We estimate the negative spillovers caused by children with elevated blood lead 

levels (BLLs) using a novel dataset that links children’s BLLs to education data 

from public schools in North Carolina. By comparing siblings in the same school 

but with observably different peer cohorts, we also contribute to the peer effects 

literature by presenting a novel way of estimating the effects of disruptive and 

low-achieving peers.  

 

“Using Remote Sensing to Reduce Vehicle Emissions in California” with 

Fiona Burlig, Michael Greenstone, Olga Rostapshova 

Particulate matter (PM) air pollution presents a substantial threat to human health. 

The transportation sector, particularly the heavy duty trucking industry, is a major 

contributor to PM. Yet, enforcing vehicle emissions regulations has proven 

prohibitively costly. We use new remote sensing technology to detect high 

emitters at greatly reduced cost. We leverage these data in a randomized trial to 

determine the impact of remote monitoring on regulatory compliance. Partnering 

with CARB, we randomly assign high-emitting trucks in California to receive 

letters that (1) inform fleet owners their vehicle is likely in violation of emissions 

standards, and (2) specify a penalty for failing to comply. 
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October 25, 2019 
 

A Recommendation for Ludovica Gazze 
 
Dear Colleagues: 
 
This letter is in support of Ludovica Gazze’s application for a junior position at your institution. 
Gazze received her PhD from MIT in June 2016. Since then, she has been working as a 
Postdoctoral Scholar at the University of Chicago’s Energy and Environment (E&E) Lab that I 
direct giving us the opportunity to work together closely.    
 
I am delighted to write on her behalf and to strongly recommend her. 
 
Gazze is an environmental and health economist with an exciting research agenda that has two 
parts. First, she is writing papers that are greatly expanding understanding about the causes and 
consequences of lead poisoning, as well as ways to mitigate its damages. This work is of high 
research and social value and she is uncovering the central role that economics plays in 
answering these questions. Put plainly, she is a rising leader on the economics of lead exposure 
and regulation. 
 
Second, she is on the forefront of an emerging approach to energy and environment research 
that I call “co-generation,” which is the lifeblood of the E&E Lab’s approach. Its basis is that 
there is an intersection between the research frontier and policy impact that is a largely 
unoccupied space but is the best path forward for the wonk’s nirvana of evidence-based 
policymaking. The power of collaborating with policymakers on policy experiments is that the 
reforms are pre-vetted for local political feasibility and have policymaker buy-in, meaning that 
the otherwise very difficult step to policy impact is made much easier. Additionally, it turns out 
that by working with policymakers it is possible to test quite novel reforms with meaningful 
economic content. Gazze is involved in a series of projects including completed ones in Fresno, 
CA and ongoing ones with the states of California, Colorado, New York, and Illinois.  
 
Gazze’s job market paper, “Hassles and Environmental Health Screenings: Evidence from Lead 
Tests in Illinois,” illustrates how to efficiently assign screenings to determine eligibility for lead 
remediation of one’s home. The government’s challenge is that millions of homes have lead 
paint (3.6 million or two-thirds of homes in Illinois were built prior to the lead paint ban in 1978) 
that poses a health risk, especially, for children and there aren’t sufficient resources to identify 
and then remediate all of them. The most common allocation rule is to target remediation to 
homes based on children’s blood lead level.  
 
Gazze examines how current approaches to screening children affect targeting efficiency. That 
is, do they draw in the children with the highest risk of testing positive for lead poisoning? In the 
presence of limited resources, even for testing, this question is central to the development of 
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efficient policy. The focus is on how screening costs affect targeting efficiency and is a novel test 
of the “ordeals” model laid out by Nichols and Zeckhauser (1982). Gazze recognizes that travel 
costs to health care providers can serve as ordeals and whether they lead to take-up by families 
with higher-risk or lower-risk children depends on the correlation between travel costs and the 
benefits in terms of identifying a child with elevated blood lead levels. The challenge for 
policymakers is that the potential recipients are likely to have private information about 
whether their home needs remediation. So in the presence of this private information, can 
government ensure that the people at the highest risk of lead poisoning get screened? 
 
To examine these issues, Gazze sets out a structural model of blood lead testing take-up, 
motivated by clarifying theoretical models of the individual’s and planner’s optimization 
problems, respectively. She takes this model to very rich administrative data from the state of 
Illinois that includes the complete lead screening histories for over 2 million children born in 
Illinois between 2001 and 2014. These data are merged to a data set that has housing age 
information from assessor files. The focus in her estimation is the elasticity of screening with 
respect to distance from health care providers, which is her measure of travel costs. To confront 
the possibility that risk varies with distance from health providers, Gazze turns to an increasingly 
popular identification strategy of relying on providers’ openings and closings to generate 
variation in distance from a provider. This approach is combined with very fine-grained location 
fixed effects (i.e., census tract and census block) so that the comparisons are based on children 
born in the same neighborhood in different years who have different provider access, after 
adjustment for year fixed effects.  
 
There are two core empirical findings.  First, an extra 15 minutes in one-way distance from a 
provider decreases the likelihood of screening by 9 percent and proximity to high-quality 
providers increases take-up. Second, there is no evidence that households who live further 
distances have higher lead exposure risk. This finding runs counter to the standard ordeals 
model that those with the highest benefits should travel the farthest; thus, distance does not 
improve targeting efficiency. Put another way, distance deters testing but has no beneficial 
targeting impact. 
  
Taking advantage of her structural model, Gazze then conducts a series of policy 
counterfactuals. A starting point for this exercise is that households in the oldest, and thus 
riskiest, households are willing to pay (WTP) $6.14 for screening, which seems low (although 
incidence rates are also low). This low WTP means that there are only modest private benefits 
from a series of interventions that provide incentives for households/providers, increases in 
providers, and a mandate for universal screening for children in old homes. Gazze notes that 
when one accounts for the externalities from lead poisoning (e.g., crime, disruptions in 
classrooms, etc.) such counterfactual policies may be socially beneficial. 
 
Gazze has also authored “The Price and Allocation Effects of Targeted Mandates: Evidence from 
Lead Hazards” (R&R, Journal of Urban Economics) that estimates the impact of state-level 
policies to remediate lead hazards in old houses with small children. I say “old” because lead 
was used extensively in paint until 1978 when it was banned. Nationwide, it is estimated that 
about 5.5 million children live in homes with lead paint. These policies vary in the timing of their 
implementation and their exact form but generally require that owners of properties that are 
rented to families with children remove lead from the facility (with costs ranging between $500 
and $40,000). The idea of these regulations was to induce owners of these houses to remove or 
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abate lead-based paint, but there has also been a concern that they operate like a tax on buyers 
of old homes. Of course, the housing market equilibrium that results need not exactly match 
what policymakers intended. 
 
The paper presents the first large-scale evidence on the effects of these state abatement 
mandates on the housing market. The heart of the empirical approach is a difference-in-
differences style estimator that exploits the timing of the state policies and whether a house 
was constructed before or after 1978. Gazze finds that the mandates decrease the prices of old 
(i.e., those constructed prior to 1978) houses by 7.1 percent, acting as a large tax on owners. 
This result is confirmed from some powerful event-study style figures. Additionally, after a 
mandate’s imposition, families with children are 14.6 percent less likely to live in old houses. 
Taken together, these results are consistent with the possibility that mandates do not greatly 
affect abatement rates. Further, it is evident that they impose large costs on owners of old 
houses and seemingly on families with children too. In many respects, this paper is an important 
example of how demand and supply forces can make it challenging for policymakers to achieve 
their goals. 
 
There are several appealing features of these lead papers that are indicative of her future. First, 
both papers take an important issue of public health and brings economics to bear on how to 
make progress on it and what the welfare consequences of doing so are. In this respect, they are 
important advances on the public health lead literatures and make clear that it is impossible to 
ignore the economics when devising environmental, health, or really almost any policy. Second, 
the papers reflect a tremendous amount of work in pulling together administrative and other 
big data sets and merging them with outside data sets. While not glamorous, such efforts are 
the lifeblood of compelling microeconomics these days. All in all, it is apparent that between 
these two papers and the several other lead papers that she is working on (see her CV), she is 
becoming a leader on the economics of lead exposure and regulation.  
 
I now want to turn to her work at the Energy & Environment Lab, where she has been engaged 
in all facets of the “co-generation” process that requires a very wide set of skills. A key skill is to 
gain and keep the trust of policymakers who often only see risk when academics come knocking 
because their objectives can differ from academics’ in fundamental ways. Gazze has now 
become adept at all stages of these relationships and indeed has nurtured some from their very 
earliest phase to actual projects. Of course, these projects also require creativity and insight in 
identifying frontier questions and methods to answer them, like all excellent academic research 
but with the added twist that it has to be politically feasible.  
 
The most advanced of these projects has produced the paper, “Enforcement and Deterrence 
with Certain Detection: An Experiment in Water Conservation Policy” (joint with Browne, 
Greenstone, and Rostapshova), which was conducted with the city of Fresno, CA. This paper is 
part of a new wave of research that asks how the economics of environmental regulations will 
be affected when the costs of detecting violations become tiny or even approaches zero. Much 
of the terrific theoretical literatures on regulation and private information may soon not apply 
to much of the real world. This change is also relevant to the older but canonical Becker (1968) 
model of crime that envisioned the costs of catching violators to be meaningful. 
 
This project specifically examines whether smart meters can be used to improve water 
conservation in a part of the US that is subject to frequent droughts. At the time that we began 
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conversations with Fresno, they had installed about 100,000 smart meters but had no real plan 
on how to take advantage of the technology. Indeed, they were determining which households 
were violating their watering rules by having “water cops” drive around the city looking for 
households who were watering their lawns on the wrong days—a very expensive approach, 
especially when the meters were recording the information at zero marginal cost. Gazze was 
central in convincing Fresno to experiment with using smart meters to test the effects of 
automated detection, varying fines, and varying thresholds. She additionally played a similarly 
central role in helping to design the experiment.  
 
The paper reports on a randomized field experiment that assigned 88,905 households into 12 
groups varying enforcement method (automated via smart meters or manual inspection), 
violation threshold, and fine levels. Automated enforcement decreases water use by 3% and 
violations by 17%. However, fines increase by 13,800% and customer service calls and 
complaints increase by 545%. The backlash underscores the political costs of 100% detection, 
suggesting the adoption of new detection technologies may be limited by politics.  
 
Through her work at the Energy & Environment Lab, Gazze and I are collaborating (often along 
with others) on a series of other co-generation style projects that aim to advance the research 
frontier and affect policy. These include projects that aim to test novel ways to improve 
enforcement of heavy-duty truck emissions in California, detect oil and gas sites that are 
violating methane emissions rules in Colorado (this one combines satellite and administrative 
regulatory data), and improve traffic safety in New York City. While these projects are at various 
stages of development, they all currently involve randomized control trials and have high 
potential for policy impact. I’m confident that Gazze will continue to conduct this style of 
research.  
 
In summary, Gazze is an empirical economist working in the fields of environment and health. 
She uses economics to guide her analyses and on the empirical side has a wide set of tools 
running from the full gamut of reduced-form evaluation approaches to designing and 
conducting randomized control trials. She is using these tools in the service of an ambitious 
research agenda that marks her as a leader on the economics of lead exposure and regulation 
and places her at the frontier of the emerging area of “co-generation” that aims to 
simultaneously produce frontier research and affect policy. As if all of this were not enough, she 
also has a great deal of experience writing successful grants. 
 
I strongly recommend that Economics departments, Business schools, Policy schools, and 
Schools of Public Health with an interest in Environmental and Health economics give Gazze 
careful consideration for an appointment. She is terrific. 
 
If I can provide further information, please do not hesitate to contact me. 
 
Best Regards, 

  
Michael Greenstone 
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October 3, 2019 
 
To whom it may concern: 
        
I am writing on behalf of Ludovica (Ludo) Gazze, an MIT Ph.D. student who received her 
doctorate in 2016 and is looking for an Assistant Professor or other research position for the Fall 
of 2020.  Ludo is an applied microeconomist specializing in environmental economics. At MIT, 
Ludo was advised by Ben Olken, Jim Poterba, and me. Upon graduation, she took a post-doc 
position at the University of Chicago Energy and Environment Lab, where she works closely 
with Michael Greenstone.    
 
Ludo left MIT with strong training in Labor and Development and a deep interest in 
environmental issues.  She has used her time at the Energy & Environment Lab to build on these 
skills and interests, developing a full-blown environmental agenda. A major fruit of this work is 
an exciting new (solo-authored) job market paper on the effects of travel costs on lead exposure 
screening take-up and subsequent remediation.  Lead screening takes time and money.  How 
important are the costs of detecting lead exposure, especially among poor children? Using a 
massive and previously unexploited administrative data set on children in Illinois, Ludo explores 
the efficiency and welfare consequences of lead exposure screening. Because travel costs are not 
randomly assigned, she develops a compelling identification strategy that exploits openings and 
closings of screening providers.  The results are striking: 15 minutes of additional travel reduces 
screening by 9 points. At the same time, her analysis uncovers no evidence that travel (or 
“hassle”) costs act as a favorable selection device where those at highest risk of lead exposure 
self-select into screening.    
 
Ludo’s job market paper provides credible and timely evidence on a stubborn public health 
problem.  But her work goes beyond credible impact evaluation with an insightful welfare 
analysis that takes account of the fact that lead poisoning is rare in the general population.  The 
results of this analysis suggest a high willingness-to-pay for screening, yet screening is a blunt 
instrument for reducing lead-related harms.  Obvious policy strategies such as increasing the 
density of screening providers are unlikely to be fruitful because screening rarely leads to 
homeowner or landlord remediation.  Overall, Ludo provides a nuanced and sophisticated 
economic analysis that offers thought-provoking findings but no easy answers to an important 
public health problem.  I expect this paper to find its way into a top journal. 
 
Ludo’s job market paper is emblematic of the steady stream of sophisticated environmental and 
public health economics we can expect from her in the years to come.  Her rapidly-expanding 
research portfolio includes an impressive thesis chapter examining the effect of US states’ lead 
paint abatement mandates on the housing market.  This paper (now R&R at the Journal of Urban 
Economics) focuses on the consequences of lead abatement mandates for the cost and allocation 
of housing. Ludo uses a simple model of the housing market to guide her interpretation of a 
range of fascinating empirical results. In addition to the housing market, the paper also looks at 
the health consequences of abatement mandates and presents a thought-provoking welfare 
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analysis of abatement policy. The identification strategy is transparent (a triple differences 
strategy exploiting abatement variation by state, year and home construction vintage), and 
Ludo’s empirical analysis is exceptionally meticulous and convincing.  This project also 
incorporates a fascinating exploration of the distributional consequences of abatement mandates. 
 
Ludo has many other exciting empirical projects in draft form or in the kitchen.  All promise to 
be relevant and interesting, and seem likely to yield major publications.  For example, her 
manuscript with Jennifer Heissel focuses on the effects of pipe maintenance on lead exposure, 
exploiting the obscure but important fact that routine water main replacement can actually 
aggravate lead exposure.  This creative and exceptionally topical project (in view of the 
problems in Flint, MI) leverages new data sources and uses econometric tools to produce a 
timely state-of-the-art causal analysis of an important question. 
 
Since leaving MIT, Ludo has hit her stride.  She has proven to be a creative and tireless scholar 
and is headed for a stellar research career.  Ludo’s impressive combination of strong research 
skills, collegiality, and capacity for hard work will make her a welcome addition to any 
economics department looking to make an outstanding applied micro hire. She is an 
exceptionally strong candidate for any school or program looking specifically to hire someone 
with interests in environmental economics or in real estate and housing markets. Ludo is an 
excellent presenter and will likely make a strong teacher. Finally, I expect you will find Ludo to 
be a valued colleague and outstanding sounding board for your own work.  I am very happy to 
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1 INTRODUCTION

1 Introduction

Sources of lead exposure are still pervasive in US homes despite evidence that early childhood

poisoning is associated with reduced IQ (Ferrie et al. 2015) and educational attainment (Aizer

et al. 2018, Grönqvist et al. 2017, Reyes 2015a), and an increased risk of criminal activity (Aizer

& Currie forthcoming, Feigenbaum & Muller 2016, Reyes 2015b, 2007). Two thirds of the Illinois

housing stock, almost 3.6 million homes, was built prior to the residential lead paint ban in 1978

and may have lead paint.1 Remediating these homes so that children do not ingest or inhale lead

dust could cost up to $37.9 billion, and would involve stripping or painting over the lead paint

while the home is temporarily vacated.2 Despite the prevalence of lead paint, poisoning rates are

relatively low: at current levels, 2.2 percent of Illinois children born in 2014 had lead poisoning

(Figure 1).3 Thus, it is hard for policy makers to identify homes where clean-up would be socially

beneficial, similar to difficulties arising when targeting energy efficiency programs (Boomhower

& Davis 2014, Allcott & Greenstone 2017).

To identify homes requiring clean-up, lead poisoning prevention programs in the US rely on

early childhood health screenings that reveal lead exposure. Because small children are not sys-

tematically in school, this approach hinges on families travelling to their doctor’s office for lead

screening. This sort of barrier to policy uptake is known as a hassle or ordeal, and hassles may

explain why lead screening rates are lower than 60 percent even in areas where the State of Illinois

requires universal screening (Figure 2).

This paper investigates the impact of ordeals on lead poisoning prevention. Specifically, what

is the impact of higher screening costs? Do these ordeals improve targeting efficiency, or do they

hinder timely detection and remediation of lead hazards? When only program recipients know

their private value of receiving a program, ordeals may reduce inclusion errors. That is, recipients

who do not need it may select out of the program to avoid these ordeals (Nichols & Zeckhauser

1Source: American Community Survey (2017).
2Source: Author’s calculation based on data from the Department of Housing and Urban Development.
3During my sample period, the Illinois Department of Public Health (IDPH) referred children to services if they

had a blood lead level of 10µg/dL or higher. In 2019, IDPH lowered the threshold to 5µg/dL following Centers for
Disease Control and Prevention guidelines that recognize no safe level of lead exposure.
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1 INTRODUCTION

1982). Households may have private information on lead hazards in their home if they know how

well-preserved the paint coat is or if they have off-the-record property inspection results. However,

Alatas et al. (2016) note that households with high potential benefits may also face higher costs per

ordeal, for example because they do not have a car and thus must travel for a longer time to visit a

doctor. In this case, ordeals may increase exclusion errors: poisoned children may be less likely to

see a screening provider, leading to high private and social costs.

To study the effect of ordeals on lead poisoning prevention, I link geocoded administrative data

on complete lead screening histories for the universe of over 2 million children born in Illinois

between 2001 and 2014 to housing age information from assessor files. Screening data includes

information on realized poisoning risk for the subsample of screened children, and housing age

data provides ex-ante observable risk for both screened and unscreened children. First, I estimate

the elasticity of screening with respect to travel costs, where travel costs are proxied by distance

to health care providers. To assuage concerns of endogeneity in households’ location relative

to providers, my empirical analysis exploits providers’ openings and closings. I compare children

born in the same location in different years who face different sets of providers. The key identifying

assumption is that openings and closings of medical doctor offices are orthogonal to trends in

lead screening. Second, I study how travel costs affect which households select into screening,

in terms of both ex-ante observable and ex-post realized risk. The key identifying assumption

needed to study selection is that, while children may obtain other services when they get screening,

households with a high- or low-risk of lead poisoning have similar expected benefits from these

additional services.

First, being 15 minutes farther away from a lead-screening provider (one-way) decreases the

likelihood of screening by 9 percent, on average. Second, I find no evidence that households who

get screened despite facing higher costs have higher observable or unobservable exposure risk.

In other words, I find no evidence that ordeals improve targeting efficiency. Third, proximity to

providers improves timely detection of lead poisoning, but it does not increase take-up of remedia-

tion funding. Thus, removing barriers to screening may not lead to increased remediations, perhaps
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due to partial compliance with abatement regulations or limited awareness of remediation funding.

Moreover, proximity to high-quality providers, as measured either by screening outcomes or med-

ical school attended, increases screening more than proximity to low-quality providers, suggesting

supply-side intervention may also affect screening.

Data on households’ revealed preference for screening allow me to estimate the social value of

the existing lead screening policy and counterfactual prevention policies. I use travel costs in the

logit framework to estimate the willingness-to-pay (WTP) for screening of households in homes

with different lead exposure risk. I simulate the impact of four screening policies: travel subsidies,

pay-for-performance incentives for providers, an increase in screening locations, and universal

screening for children in old homes. Consistent with the low incidence of lead poisoning, I estimate

average WTP for screening among households in the most at-risk homes to be $6.14, $4-29 higher

than the WTP of low-risk households. Such a low average WTP results in modest benefits for the

marginal households under all counterfactual screening policies I examine. Yet, these policies may

be cost-effective when accounting for reductions in lead exposure externalities, consistent with the

large impacts of programs targeting disadvantaged children found by Hendren & Sprung-Keyser

(2019). By contrast, increasing remediations does not appear to be cost-effective.

This paper contributes to three strands of literature. First, a robust body of literature identifies

travel costs as an important determinant of take-up of social benefits, including childcare subsidies,

disability insurance, small business loans, and health care services (Currie 2006, Rossin-Slater

2013, Herbst & Tekin 2012, Deshpande & Li forthcoming, Nguyen 2019, Lu & Slusky 2016,

2017, Einav et al. 2016, Lindo et al. forthcoming, Venator & Fletcher 2019). In the US, limited

access to vaccines, including information barriers, scheduling challenges, and transportation costs,

appears to contribute to vaccine delays among disadvantaged families (Brito et al. 1991, Carpen-

ter & Lawler 2019). In India, small financial incentives appear more cost-effective at increasing

immunization take-up than improving supply (Banerjee et al. 2010). I use travel costs to elicit

households’ willingness-to-pay for information about their exposure risks, related to a large envi-

ronmental economics literature surveyed by Kuwayama & Olmstead (2015) that uses travel costs
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to estimate the recreational value of environmental amenities. My paper shows that travel costs

decrease timely detection of lead hazards, potentially imposing a large externality on society.

Second, a large literature studies the targeting efficiency of welfare programs.4 Hoffmann

(2018) finds that poor Indian households are very elastic with respect to non-monetary prices,

such as travel costs. Exploiting providers’ openings and closings, I find no evidence of high-risk

households differentially selecting into screening at higher distances, suggesting that households at

high risk for lead exposure in the US might disproportionally dislike travel hassles, too. My find-

ings suggest that travel costs may have worse targeting properties than bureaucratic ordeals, which

have been shown to improve targeting efficiency in the US (Kleven & Kopczuk 2011, Finkelstein

& Notowidigdo 2018, Einav et al. 2019).

Third, an emerging literature examines the efficacy of environmental regulations. Due to scarce

resources, regulators often rely on self-reporting and imperfect monitoring, resulting in rampant

non-compliance (Duflo et al. 2013, 2018, Gibson forthcoming, Reynaert & Sallee 2018, Vollaard

2017, Zou 2018). In this context, the ability to target resources for inspections and clean-ups can

significantly improve environmental and public health outcomes (Greenstone & Meckel 2019). My

paper sheds light on how health screening policies affect the detection of environmental hazards in

private homes where universal inspections may be infeasible.

Section 2 models households’ screening decision and discusses the impact of travel distance

on targeting efficiency and prevention. Section 3 describes the data I use in this paper. Sections 4

and 5 analyze screening take-up and the costs and benefits of different lead poisoning prevention

policies.

2 Theoretical Framework

The first part of this section discusses how travel costs affect selection into screening, building on

the classical work of Nichols & Zeckhauser (1982) and its extension by Alatas et al. (2016). The

4See Hanna & Olken (2018) for a review of research in developing countries.
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2.1 The Household’s Screening Take-Up Decision 2 THEORETICAL FRAMEWORK

second part discusses how the planner’s screening rule may differ from the private optimum due to

lead poisoning externalities.

2.1 The Household’s Screening Take-Up Decision

I model screening as an insurance mechanism, with benefits if a child is found to be lead-poisoned,

thus ruling out benefits from learning that a home is lead-safe. Specifically, screening benefits

derive from assignment of the lead-poisoned child to case management aimed at reducing lead

poisoning damages.5 Parents’ perceived screening benefits depend on several factors, including

information about exposure risk, degree of risk aversion, degree of altruism towards the child,6

beliefs about treatment costs and recovery probability,7 and additional benefits from visiting the

doctor, such as having a physical examination or an immunization shot.8 My model does not

require assumptions on these parameters; the revealed-preference approach in Section 5 allows me

to compare willingness-to-pay (WTP) estimates to estimates of screening benefits computed for

different parameter values.

Let bi be household i’s perceived benefit from screening their child for lead exposure. Let the

cost of screening child i, ci, be a function of the nominal screening price, p, and the opportunity

cost in terms of the parents’ wage, wi and travel time, ti, which is proportional to distance from a

healthcare provider, di. Here I abstract from heterogeneity in p for simplicity, although the cost

of a blood lead test in Illinois varies based on the child’s insurance coverage.9 Then, child i is

5Case management occurs mostly at home and includes nutritional education and information about reducing
exposure in the home, a home inspection, and referral to lead remediation services, which are generally subsidized for
low-income households. Billings & Schnepel (2018) show that such case management fully reverses lead poisoning
damages in a sample of North Carolina children.

6The evidence on how much parents value reductions in their children’s health risk relative to reductions in their
own risk is mixed (see for example, Gerking & Dickie 2013, Gerking et al. 2014)

7Myerson et al. 2018 show that increasing treatment access increases screening, evidence of an “ostrich effect”.
8Not observing these additional services does not bias the selection analysis if benefits from these additional

services are not correlated with screening benefits.
9While lead screening is fully covered for children enrolled in Medicare or All Kids, nominal prices range between

$0-43 for uninsured or private insurance. Source: http://www.leadsafeillinois.org/uploads/documents/

LeadSafeILDirectory061.pdf. Accessed in June 2019. I discuss how this variation in prices affects my estimates
of households’ WTP for screening in section 5.1.
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2.1 The Household’s Screening Take-Up Decision 2 THEORETICAL FRAMEWORK

screened if and only if

bi ≥ ci = witi + p. (1)

Because ti ∝ di, this inequality yields a cutoff d̄i above which a child is not screened:

d̄i =
bi− p

wi
. (2)

If screening benefits are increasing in risk, that is, if b(ri) and b′(ri) > 0, riskier children will

have a higher willingness-to-travel for screening, as predicted by the classic ordeals model (Nichols

& Zeckhauser 1982). The higher the potential exposure, the higher the probability that screening

detects lead poisoning and leads to timely intervention to remove the exposure source. Then, the

cutoff is increasing in risk:
dd̄i

dr
=

∂bi

∂ r
1
wi
≥ 0. (3)

Figure 3 illustrates how risk affects the relationship between screening and distance. High-risk

households are less sensitive to distance: their screening rates decline less sharply with distance

than screening rates for low-risk households (left panel). Therefore, the share of screened children

that is high-risk increases with distance (right panel).

However, the model’s predictions become ambiguous if we consider travel mode, following

Alatas et al. (2016). Let ai denote the family’s assets, and assume that assets are negatively corre-

lated with risk, a′(ri) < 0, and that travel time is negatively correlated with assets. For example,

assume travelling by car is faster than walking or using public transit: ti(ai,di) ∝
di
ai

. Then,

d̄i ∝ ai
bi− p

wi
, (4)

dd̄i

dri
∝

∂ai

∂ r
bi− p

wi︸ ︷︷ ︸
<0

+ai
∂bi

∂ r
1
wi︸ ︷︷ ︸

>0

Q 0. (5)

In a model with assets, individual distance cutoffs may be either increasing or decreasing in
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risk. While the second term in equation (5) is still positive, the first term is negative: riskier

households face higher travel times conditional on distance, and are therefore willing to travel

only shorter distances on average. Thus, the effect of reducing distance to providers on the average

riskiness of screened children is an empirical question. In section 4.2, I exploit providers’ openings

and closings to answer this question.

2.2 The Planner’s Problem

The socially optimal level and targeting of screening may not coincide with the individual opti-

mum. Lead exposure has externalities that may not be internalized by households: lead-poisoned

children negatively affect their classroom peers (Gazze et al. 2019) and are more likely to engage

in risky and criminal behavior (Aizer & Currie forthcoming, Feigenbaum & Muller 2016, Reyes

2015b, 2007). Detecting lead hazards following a lead poisoning case might also prevent exposure

of future residents.

Thus, I model the social benefits of screening a child as the sum of three components.10 First,

I consider the private benefit, bi− ci. Second, I add the averted externality i would have imposed

on society if they had not been screened, ei. Third, I add the discounted value of the avoided

externalities from preventing exposure among children who will live in i’s building in the future.

Summing over the set of screened children S, this yields

B = ∑
i∈S

( bi− ci︸ ︷︷ ︸
PrivateValue

+ ei︸︷︷︸
Externality

+δ ∑
j

e j ∗Lives in i’s building j︸ ︷︷ ︸
PreventionValue

). (6)

Thus, some households with low private benefits may have a high social value of screening if they

have a large externality or prevention value.

The planner cannot optimally target screening without knowing ex-ante the externality each

child’s undetected poisoning would impose on society. However, the planner observes a proxy for

exposure risk at each home, namely housing age. In this case, a policy requiring screening based

10Here, I abstract from the medical sector costs of increasing screening.
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on observable risk may be better than allowing for self-selection based on private benefits. In my

empirical analysis I estimate both the average prevention value of screening (Section 4.3) and the

societal values of different counterfactual screening policies (Section 5.2).

3 Data

My analysis requires data on children’s screening outcomes, travel costs, lead exposure risk, and

lead remediations. First, I link birth records to blood lead test data to construct children’s screening

histories. Second, I geocode children’s addresses at birth and lead-screening providers’ addresses

to measure the distance a child has to travel to get screening. Third, I link these individual-level

data to address-level housing age and remediation data to construct unique measures of exposure

risk and remediation activity at birth addresses. Appendix Table A.1 provides child-level summary

statistics for the variables included in the analysis.

3.1 Childhood Lead Screening Measures

The Illinois Department of Public Health (IDPH) collects children’s blood lead records from physi-

cians and laboratories. Federal guidelines mandate that all children on Medicaid must be screened

for lead poisoning at ages one and two.11 In addition, IDPH requires screening for all children

living in high-risk zip codes, defined by housing age and demographic characteristics.

IDPH provided birth and death certificates for almost 4.5 million children born in Illinois be-

tween 1991 and 2016. These records include each child’s name and birth date, allowing me to

link these data to the universe of 5.4 million blood lead tests performed in Illinois between 1997

and 2016, with a match rate of 86 percent (Appendix Figure A.1). Because lead test records are

incomplete prior to 2001, I limit my analysis to children born after 2000. I also limit the analysis

to children born before 2015 to ensure I observe each child’s outcome by age two. I classify non-

deceased children not linked to any tests as not screened. Appendix Tables A.2 and A.3 show the

11The effects of lead exposure are worst in small children. Therefore, in the remainder of my paper I focus on
screening and exposure by age two. The findings and conclusions carry through in the larger sample.
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number of tests and unique children in my original sample, and the number remaining after each

data cleaning and linkage step.

IDPH lead test records include test date, blood lead level (BLL), test type (capillary or venous),

provider and laboratory identifiers, and Medicaid status. I construct a child’s age at time of test-

ing based on test date and birth date. Capillary tests are prone to false positives due to surface

contamination with lead dust. Thus, capillary tests that show elevated blood lead levels need to

be confirmed by another capillary test or a venous test. For each child, I keep the highest venous

test when available, or the highest confirmed capillary test when available. Appendix Table A.4

reports the composition of tests in my sample, including 70,000 confirmed elevated blood lead

levels (EBLLs), defined as blood lead levels above 9µg/dL, from over 22,000 children. Labora-

tories have different minimum reporting limits, which vary over time, meaning BLLs are bottom-

censored; I correct for these limits to obtain correct population estimates of lead exposure.12

Birth records also include data on family characteristics, such as mother’s marital status, age,

education, and race, as well as child’s address at birth. I geocode these addresses to link the blood

lead data to housing age information (see Section 3.3 below) and Census block group median

income from the 2015 American Communities Survey. After geocoding, I obtain a sample of over

2 million children and over 2.9 million tests linked to these children. I use birth address rather than

address at testing time because I only observe subsequent addresses conditional on a child being

screened for lead. Because my analysis focuses on outcomes by age two, when lead exposure is

most damaging, mobility is not likely to severely bias my estimates of the effects of distance.

3.2 Provider Access Measures

IDPH collects the name and address of providers who perform lead tests. Screening providers can

be individuals, small groups of doctors, or hospitals. Appendix Table A.5 shows that 24 percent of

12I determine the cutoff for each laboratory based on the distribution of test results for that laboratory by both test
type and year. Appendix Figure A.2 shows an example of a laboratory with a very apparent cutoff at 5µg/dL. Some
laboratories have a thin left tail of test results below the estimated cutoff: I reassign those test results to the cutoff
value. For each cutoff-year-type cell, I use laboratories without cutoffs to compute the average BLL for tests below
that cutoff and I reassign all test results at the cutoff to this average value.
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providers in my sample are individuals. I code a provider as entering or exiting the sample the first

or last year that I observe them ordering tests, respectively. On average, 4.5 percent of providers

enter the market each year and 4.8 percent exit. Appendix Figure A.3 displays how providers’

locations change from the beginning to the end of my sample.

To construct a measure of travel costs for all children in my sample, I calculate the distance as-

the-crow-flies between the child’s birth residence and the closest provider open during the child’s

birth year.13 While the median child has a provider within 1.2 kilometers (Appendix Figure A.4),

households may not visit their closest provider due to preference for continued care after a move

(Raval & Rosenbaum 2018) or insurance network constraints. The sample of screened children

allows me to assess the relationship between distance to closest provider and distance to provider

of choice. Appendix Figure A.5 shows that over 90 percent of children do not visit their closest

provider, and the median household travels 5 kilometers for screening. Still, Figure 4 shows that

distance to closest provider predicts actual distance travelled: if the closest provider is 1 kilometer

farther away, a household travels on average an extra 3.6 kilometers (Appendix Table A.6).

The impact of nearby providers may depend on the quality of the available providers. I consider

the 2019 USNews ranking of the medical school the provider attended as one measure of quality,

which has been shown to affect opiod prescription rates (Schnell & Currie 2018). I obtain med-

ical school attended by linking providers to the 2019 Medicare Physician Compare File (MPCF)

through name, address, and practice name.14,15 I also consider measures of quality that directly

capture a provider’s lead screening behavior: I define providers as higher quality if they screen

more children and/or screen them at the right times according to federal and state guidelines. For

each provider, I compute their screening rate and their compliance rate with screening guidelines

as follows. Because I do not observe a child’s provider if the child is not screened, I calculate a

provider’s screening rate as the screening rate for children born within the median distance house-

13For computational reasons, to identify closest providers I use a search algorithm that conditions on the median
catchment distance of each provider, which may overstate distance for children farther away than the median, thus
biasing the estimated effect of distance downward. In the sample of screened children, this procedure assigns 7.09
percent of tests to a minimum distance that is higher than the actual distance travelled to obtain the test.

14For organizations with multiple providers, I average the rankings.
15Only one percent of providers in the MPCF are pediatricians.
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holds travel to see that provider, and I weigh unscreened children by the inverse of their distance.16

Because federal guidelines mandate that all children on Medicaid must be screened for lead poi-

soning at ages one and two, I compute the share of Medicaid children a provider screened at age

one who have a second test by age two.17 I also compute the share of EBLLs detected by each

provider with a required follow-up within 90 days.18 I then aggregate screening rate and compli-

ance rates with screening age and follow-up guidelines into a summary quality index. Finally, I

consider a provider’s ability to perform capillary tests as an indicator of quality, because capillary

testing may reduce the barrier to screening if households are averse to venous blood draws.

Providers’ screening-based quality measures and providers’ medical schools may capture dif-

ferent aspects of a provider’s practice. Indeed, Appendix Figure A.7 shows that these different

measures are imperfectly correlated. One explanation is that a provider’s screening record is in-

fluenced by their patient base: providers in neighborhoods with high shares of disadvantaged chil-

dren have higher screening rates (Appendix Figure A.8).19 Moreover, more educated households

visit providers of higher observable quality, such as providers who attended higher-ranked medical

schools, but may be less able to sort based on unobservable screening rates (Appendix Table A.7).

My empirical analysis is robust to using different quality measures.

3.3 Childhood Lead Exposure Pathways

Although children can be exposed to lead through several channels, deteriorating lead paint, which

was used in homes until 1978, is the most common source of lead exposure in Illinois (Abbasi et al.

2019b). In this paper, I use a house’s construction year to proxy for the child’s observable risk of

lead exposure. To do so, I link exact birth addresses to parcel-level housing data in the Zillow

Transaction and Assessment Dataset that includes information on when each house was built.20

16For most providers, the median child’s address is within 7 kilometers of their provider’s address.
17I only observe Medicaid status for screened children.
18Appendix Figure A.6 shows that only around 50 percent of EBLLs have a follow-up test.
19Appendix Figure A.9 shows the location of providers of different quality in Illinois.
20More information on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions

are those of the author and do not reflect the position of Zillow Group.
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I define children living in homes built before 1930 as high-risk. Older homes have a higher

risk of lead paint hazards: HUD estimates that 87 percent of houses built before 1940 in the US

have lead paint, compared to 69 percent of houses built between 1940 and 1959 and 24 percent of

houses built between 1960 and 1977 (HUD, 2011). In related work using IDPH data, Abbasi et al.

(2019a) find that children living in homes built prior to 1930 have the highest BLLs, after control-

ling for children’s demographic characteristics, zip code, and birth year fixed effects. Appendix

Table A.8 replicates these estimates with binned construction year indicators and different sets of

neighborhood fixed effects.

3.4 Lead Hazard Remediations

To measure lead hazard abatement following EBLL detection, I use data on addresses that receive

remediation funding under HUD’s lead hazard control programs. HUD awards grants to local

agencies for individual remediation projects.21 Because these funds are targeted to low-income

property owners, these data do not cover the universe of lead hazard remediations. Yet, they

provide a useful picture of case management following EBLL detection in the absence of more

complete data.

4 Empirical Analysis: Travel Costs and Child Lead Screening

This section builds on the model in Section 2 to investigate how travel costs affect screening. First,

I estimate the elasticity of screening with respect to travel costs. Second, I study how travel costs

affect selection into screening. Third, I estimate the effect of travel costs on timely EBLL detection

and the likelihood of hazard remediation. Fourth, I investigate how the quality of nearby providers

affects screening.

To study the relationship between screening take-up and travel costs, I exploit changes in dis-

21The data were collected for a project with Stephen Billings, Michael Greenstone, and Kevin Schnepel, titled “Na-
tional Evaluation of the Housing and Neighborhood Impact of the HUD Lead-Based Paint Hazard Control Program,
1993-2016” and funded by HUD.
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tance to providers over time due to providers’ openings and closings. As providers open and close,

children born at the same location but in different years face different sets of providers. This ap-

proach is internally valid if the timing of openings and closings is exogenous to trends in screening

rates over time. This condition would be violated if providers open in areas where public health

officials target campaigns to increase screening rates, or if providers open in richer, low-risk areas

with decreasing screening rates. To investigate the plausibility of this assumption, I estimate the

following regression:

ScreeningRategy = ∑
τ

βτEntryg,y−τ +∑
τ

γτExitg,y−τ +ηg +ξy + εi, (7)

where ScreeningRategy is the screening rate in neighborhood g and birth cohort y; Entryg,y−τ

and Exitg,y−τ are leads and lags of relevant providers’ entries and exits, defined as changes in the

distance between the neighborhood centroid and the closest provider; ηg is a set of neighborhood

fixed effects and ξy is a set of birth cohort fixed effects. Figure 5 plots the βτ and γτ coefficients

from estimating equation 7 at both the Census tract and block level. My estimates suggest that

providers’ entries and exits are not correlated with pre-existing trends in screening rates. Moreover,

Appendix Table A.9 does not show correlation patterns between openings and closings and lagged

neighborhood characteristics at the Census tract or block level.

Figure 5 suggests that providers’ openings and closings provide exogenous variation in travel

costs over time. I leverage this variation in a linear probability model that compares children born

in the same location in different years, controlling for location and birth year fixed effects, by

estimating the following equation:

Yigy = βdi +ηg +ξy + εi, (8)

where Yigy is an outcome for child i born in neighborhood g in year y, di measures a child’s distance

to the closest open provider during their birth year, ηg is a set of location fixed effects and ξy is a

set of birth year fixed effects. My preferred specification defines location as Census block, but my

14



4.1 Do Travel Costs Decrease Screening? 4 TRAVEL COSTS

results are robust to considering zip code, tract, block group, or address. I cluster standard errors

at the zip code level to allow for arbitrary correlation in exposure sources and screening behavior.

The next sections examine the effect of distance on different outcomes. First, I estimate the

effect of travel costs on screening by looking at an indicator for whether a child is screened by

age two. Second, I study selection by examining indicators for a screened child having certain

characteristics, such as living in a home built prior to 1930, being black or hispanic, or having

a single, teen, or low-education mother. Third, I estimate the effect of travel costs on timeliness

of poisoning detection and remediation activity by looking at age at test and an indicator for a

HUD-funded remediation at the address within three years.

4.1 Do Travel Costs Decrease Screening?

Children born in homes closer to providers have higher screening rates on average, and this pattern

holds after controlling for location fixed effects (Figure 6). In the raw data, this relationship does

not hold for children farther than ten kilometers from providers, but 93 percent of the children

in my sample live within ten kilometers of a provider.22 In my main analysis, I drop the 31,178

children who are farther than 20 kilometers from a provider (2.6 percent of the original sample),

as they are likely very different from the rest of the sample. Columns 1–2 of Appendix Table A.10

show that including these outliers attenuates the estimated elasticity of screening with respect to

travel costs, because these outliers have a lower elasticity.

Panel A of Table 1 estimates that being one kilometer farther away from a lead-screening

provider, a 30 percent increase over the mean distance, decreases the likelihood that a child is

screened by age two by 0.4 percentage points, or 0.9 percent relative to the mean, implying an

elasticity of -0.03. Because 1 kilometer to the closest provider translates into an extra 3.6 kilome-

ters travelled to get screening (Appendix Table A.6: Column 4), it may be appropriate to divide

this elasticity by 3.6, obtaining a value of -0.01. For reference, Herbst & Tekin (2012) estimate an

22Appendix Figure A.4 shows that on average, a child is 3.3 kilometers away from the closest provider, and the
distribution is right skewed.
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elasticity of -0.13 for take-up of childcare subsidy.

Interpreting the magnitude of the effect of distance on screening take-up requires data on house-

holds’ transportation mode, which I do not observe. Thus, I use car travel times for reference. By

car, it takes 2 minutes to travel one kilometer in Chicago and 1–1.5 minutes elsewhere in the state,

on average (Agbodo & Nuss 2017).23 Lead screening requires a single appointment, that is a two-

way trip to the doctor. Therefore the estimates in Table 1 imply that a $12.50 increase in travel

costs (a thirty-minute two-way trip at 1.5 minute per kilometer, 10 kilometers each way, and $25

hourly wage), decreases screening take-up by 9 percent.24 These estimates are based on distance

as-the-crow-flies which is smaller than the distance implied by the road network suggesting travel

costs per kilometer may be higher.

4.1.1 Robustness Checks

These estimates are robust to different specifications and alternative distance measures, functional

forms, sample selection criteria, and outcome definitions. Table 1 shows that these estimates are

robust to controlling for different sets of location fixed effects, suggesting that the location of

providers’ openings and closings is not correlated with children’s characteristics that also affect

their likelihood of screening. Estimates that control for building fixed effects, which are more

stringent and reduce the sample, are not statistically different from those in my preferred specifi-

cation with block fixed effects. Moreover, Panel B of Table 1 shows no evidence that the screening

gradient with respect to distance is nonlinear.

Appendix Table A.10 explores different specifications. Columns 3 and 6–7 include child-

level controls and Census block group trends. Controlling for neighborhood trends helps assuage

concerns that neighborhood changes over time, such as gentrification, are driving the estimated

relationship between screening rates and distance to providers. Columns 4 and 5 use different

measures of distance. Column 4 estimates the elasticity of screening relative to the average distance

23Appendix Table A.11 shows that households in Chicago are more sensitive to distance, suggesting that transit
availability does not mitigate ordeals in this case.

24Source: Bureau of Labor Statistics.
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from the closest five providers, to take into account that households do not always visit the closest

provider. The coefficient on this variable is attenuated with respect to my preferred estimate, but

still negative and significant. Column 5 uses distance from the Census block centroid to remove

distance variation due to children living in different buildings within the same block, yielding

estimates that are not statistically distinguishable from my preferred estimate. Appendix Table

A.12 shows that proximity to providers who accept new patients and patients on Medicaid matters

most for screening take up. Appendix Table A.11 shows that travel costs affect screening similarly

way for first-born and younger children, suggesting that knowledge acquired by screening the first

child does not change the elasticity to travel costs.

Appendix Table A.13 shows that logistic and ordinary-least-square regressions that include

regressors’ block-level means but omit block fixed effects yield similar findings to my preferred

linear probability model. This approach avoids the incidental parameters problem (Neyman &

Scott 1948) and is equivalent to the linear fixed effects model if there is no correlation between

the relevant regressors and the group fixed effects (Mundlak 1978, Chamberlain 1984, Bafumi &

Gelman 2016). This equivalence is important because Section 5.1 uses the logit framework to

estimate the differential willingness-to-pay of different households for screening. Moreover, this

table shows that my choice of focusing on screening by age two is without loss of generality, as

I find similar effects of distance on screening by different ages, likely because most screening

happens by age two (Appendix Figure A.10). Appendix Table A.14 shows that my estimates are

robust to including only children born within two kilometers of a provider’s entry or exit during

their birth year, suggesting that the results in the larger sample are not driven by omitted correlates

of provider location.

4.2 Do Travel Costs Affect Selection into Screening?

The previous section finds that travel costs decrease screening take-up. Section 2 discusses how the

marginal child who opts into screening may change as costs increase. On the one hand, families

with low exposure risk will not be willing to pay the higher travel cost. On the other hand, children
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facing high travel costs, who may also be at high risk, might forego screening. Thus, the effect of

travel costs on selection is theoretically ambiguous. This section estimates how the composition

of screened children changes with travel costs.

I estimate equation 8 on the sample of screened children, with children’s characteristics as the

dependent variable. I include ex-ante observable and unobservable exposure risk, as measured by

housing age and lead levels. Consider two children living next to each other, one in an old house

and one in a new house. There is a clinic 250 meters away, and both get screened. Years later, two

new families with children move in; the clinic is closed and the closest provider is now a kilometer

away. Only the child in the old house gets screened. Among the screened children in this example,

the probability that a child lives in an old home increases with distance: it is 0.5 at 250 meters and

1 at one kilometer. Data from this example would suggest that hassles improve targeting based on

observable risk, as illustrated in Figure 3.

Table 2 does not support the hypothesis that the marginal child who is screened at farther

distances has higher observable or unobservable exposure risk. In fact, children screened at higher

distances have slightly lower BLLs and are less likely to live in a home built prior to 1930, although

the BLL result is only significant when controlling for Census tract fixed effects. Consistent with

ability to pay being a barrier to screening, children screened at higher distances are also slightly

less likely to be black or hispanic, with significant estimates only when controlling for tract fixed

effects. Appendix Table A.15 shows that these findings are largely robust to including time-varying

neighborhood controls.

4.3 Does Proximity to Providers Improve Children’s Outcomes?

The finding that travel costs decrease screening for high- and low-risk children alike suggests that

increased travel costs may hinder detection of lead-poisoned children. If lower detection rates lead

to lower remediation rates in affected homes, future residents may face increased poisoning risk,

too. This section investigates the extent to which changes in distance affect the likelihood and

timeliness of detecting an EBLL, as well as the likelihood of remediations and the likelihood of
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future EBLLs at the same location.

Column 1 of Table 3 shows that children who live one kilometer closer to a provider are 3.3

percent more likely to be diagnosed with a blood lead level of 10µg/dL or above. Moreover,

Columns 2 and 3 show that children one kilometer closer to providers are screened six days earlier

on average, and are younger when their highest BLL is recorded. Early detection may improve

long-term outcomes by reducing exposure (Billings & Schnepel 2018). Column 4 investigates the

relationship between travel costs and HUD-funded remediation at a child’s home. To allow enough

time for remediation to happen after poisoning detection I examine the likelihood of remediations

within three years of birth. I find no evidence that proximity to providers is associated with higher

remediation activity. Consistent with the lack of impact of travel costs on remediations, Column 5

shows no evidence of lower future EBLL rates for homes closer to providers.25

This section studies the impact of travel costs on poisoning detection and poisoning prevention

activities at a child’s home. My findings suggest that travel costs may affect outcomes for poisoned

children, but do not have significant spillovers on future residents. These results question the

prevention value of screening policies, which I investigate in Section 5.

4.4 Does Providers’ Quality Affect Screening?

One interpretation of the findings in this section is that after a provider exits, children have less

access to health care in general, and forego lead screening as well as other health treatments.

However, Illinois children appear to have frequent interactions with providers as measured by

measles immunization rates, which are above 97 percent.26 The first dose of the measles-mumps-

rubella vaccine needs to be administered at age one, the same age Medicaid recomments a first

lead screening. Although immunization shots are available also at pharmacies, mobile clinics, and

local health departments, the disparity in immunization and screening rates suggests that providers

25Remediations and repeated EBLLs in the same home are rare, although my sample includes over 2,000 of these
events. Appendix Table A.16 shows that the null effects are robust to limiting the sample to children with a higher
incidence of these events, as well as to different techniques that correct for small sample bias.

26Source: Illinois School Board of Education. https://www.isbe.net/Documents/Immunization_17-18.

xlsx accessed on 2019/08/17.
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and/or families exercise more discretion for screening decisions than they do for immunization

decisions. Indeed, an extensive literature documents large disparities in providers’s practice styles

(Mullainathan & Obermeyer 2019, Kwok 2019, Fadlon & Van Parys 2019, Silver 2019, Currie

et al. 2016, Van Parys 2016, Fletcher et al. 2014, Epstein & Nicholson 2009).

Here, I ask whether access to high-quality providers affects screening take-up. Appendix Table

A.7 shows that highly-educated households sort into high-quality providers, which may confound

the estimates of the effect of provider quality. Parents may more easily observe a providers’ alma

mater and select on that, than providers’ screening-based quality. Thus, I test for sorting by inves-

tigating whether proximity to high-quality providers as defined by screening-based measures has

additional explanatory power than proximity to providers who attended top 20 medical schools.

Screening-based quality measures include whether providers offer less-invasive capillary tests, ad-

herence to screening guidelines, and screening rates. I regress a child’s screening indicator on

indicators for providers’ presence within concentric areas of a child’s birth address as well as indi-

cators for the presence of high-quality providers:

Yigy =∑
k

βkAnyProviderInKi+∑
k

γkHighScreeningQualityInKi+∑
k

δkTop20MedSchoolInKi+ηg+ξy+εi,

(9)

where k ∈< 1km, 2−5km, 5−10km,10−20km.

Figure 7 shows that children closer to providers have higher screening rates, and the more so

if they are closer to high-quality providers. Convenient access to providers appears to get families

“in the door”; once families travel to a provider, high-quality providers disproportionally increase

screening rates, as measured by all quality variables. Moreover, screening-based quality measures

have additional predictive power beyond a provider’s alma mater, suggesting that these results are

not driven by households with a higher propensity to screen selecting to visit providers with better

education. Thus, policies improving providers’ screening-related quality, such as provider training,

may increase screening.
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5 POLICY COUNTERFACTUALS

5 Benefits of Counterfactual Prevention Policies

The previous section finds that travel costs decrease screening take-up and timely poisoning de-

tection and do not improve targeting. Could policies that increase screening improve outcomes for

poisoned children and society at large? This section exploits variation in travel costs to estimate

households’ willingness-to-pay (WTP) for screening and simulates the impact of five counterfac-

tual policies aimed at increasing screening and/or remediations.

5.1 Exposure Risk and Willingness-to-Pay for Screening

This section estimates the WTP for screening of households with different observable characteris-

tics. Figure 8 illustrates that children living in homes built prior to 1978 are five percentage points

(11 percent) more likely to be screened than children living in newer and less risky homes, after

controlling for block fixed effects (see Appendix Table A.10). Are households in older homes also

less sensitive to travel costs? To answer this question, Table 4 presents results from both the linear

probability model in equation 8 and an equivalent logit model. Column 1 reports average estimates

in the whole sample, while other columns report estimates for subsamples, obtained by interacting

a household’s distance to the closest provider with indicators for household characteristics.

To derive the WTP for screening, I follow Einav et al. (2016) and I define the utility from

screening as

ui = αi−βi(θidi + p), (10)

where di is distance from provider, θi is household i’s opportunity cost of travel time, p is the

nominal price of a screening test, and αi and βi are preference parameters. Assuming that αi =

δ
αXi + εi, βi = δ

β Xi and that εi follows a Type I Extreme value distribution, household i’s WTP

for screening is αi
βi
− θidi− p. As discussed in Section 4.1.1, to avoid the incidental parameters

problem (Neyman & Scott 1948) while still being able to recover αi, I include block-level means

of relevant regressors but omit block fixed effects.

Table 4 shows that most households have a negative WTP for screening and that households
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in riskier homes have the highest WTP. Households in homes built prior to 1930 are willing to

pay $6.14 for screening. Similarly, households with low socioeconomic status have a higher WTP

for screening than better off households, reflecting their heightened risk. Because Panels A and B

of Table 4 do not show large differences in the elasticity to travel costs, βi, these different WTPs

suggest households have different valuations of screening benefits, αi.

If all households face the same price for a test, the estimates in Table 4 imply that households

in pre-1930 homes are willing to pay up to $29.16 more than households in newer homes. If,

instead, households living in pre-1930 homes have no co-pay while low-risk households pay full

price ($43), the difference in WTP between high- and low-risk households becomes negative. Con-

versely, the difference widens to $72.16 if riskier households pay full price due to lack of insurance.

Still, my definition of travel costs likely overestimates WTP. First, high-risk households are less

likely to drive meaning they need more time to travel a given distance.27 Second households often

travel to providers that are farther away than their closest provider. To address the second concern,

I can divide the WTP estimates by the average relationships between minimum and actual distance

in the whole and pre-1930 homes sample, 3.6 kilometers or 6.6 kilometers respectively (Appendix

Table A.6: Column 4), yielding a difference in WTP of $8.10 or $4.42, respectively.

To interpret the magnitude of these WTP estimates, I need a measure of screening benefits.28

Section 2 discusses how under risk-neutrality and perfect information, perceived benefits are the

converse of the expected costs of lead poisoning. By contrast, perceived benefits exceed expected

poisoning costs under risk aversion and fall short of them if households underestimate treatment

effectiveness or overestimate treatment costs. Households in pre-1930 homes have a 0.8 percentage

point higher likelihood of an EBLL than households in new homes (Column 4, Appendix Table

A.8), but estimates of the cost of an EBLL vary widely. On the one hand, Gazze et al. (2019)

find that children with EBLLs have test scores that are 0.031 standard deviations lower than their

siblings, implying a net present value of lifetime earnings lost to lead poisoning of $5,616 and

27Appendix Figure A.11 shows a negative correlation between car ownership rates and the share of homes built
prior to 1930 for Census tracts with fewer than 50 percent of homes built prior to 1930.

28Using data on chelation treatment for severe lead poisoning, (Agee & Crocker 1996) estimate that parents are
willing to pay $16.11 to reduce their child’s lead levels by one percent.
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an expected lifetime cost of living in a pre-1930 home relative to a new home of $45.29 On the

other hand, the correlation between IQ losses and BLLs implies an expected lifetime cost of living

in a pre-1930 home relative to a new home of $910 (Schwartz 1994), but this estimate does not

account for unobserved innate ability correlated with lead exposure. Most parameter values for

benefits and WTP indicate parents undervalue screening, although neither estimate includes the

opportunity cost of the additional time parents spend caring for a poisoned child.

5.2 Policy Counterfactuals

This section simulates the societal benefits of different policies aimed at increasing screening and

remediations in the 2014 cohort as modeled in equation 6. I consider four screening policies.

First, I look at incentives for households and providers. Then, I look at a policy opening screening

locations in each zip code. Finally, I evaluate a 100 percent screening requirement for children in

homes built prior to 1930.

Table 5 reports the number of additional children screened and additional poisoning cases de-

tected under each policy. I compute additional detection rates under each policy assuming that

marginal children have the average poisoning rate in the 2014 cohort, based on my finding that

hassles do not improve targeting (Section 4.2). When evaluating the screening mandate for old

homes, I use the poisoning probability among children living in old homes. I compute the private

benefits of each policy by summing the WTP for screening of the marginal households, bi− ci,

estimated in section 5.1.30 I assume the prevention benefits from the screening policies are zero

based on the lack of evidence that proximity to providers reduces future exposure (Section 4.3).

Finally, I compare these policies to subsidizing full remediation for addresses with EBLLs. While

I report the costs of these policies although they involve transfers, examining the opportunity cost

29I use estimates by Chetty et al. (2014) that a one-standard-deviation-decrease in test scores is associated with a
12 percent decrease in earnings at 28 and 2018 Current Population Survey data to compute a lifetime earnings profile,
assuming a growth rate of real labor productivity of 1.9 percent and a discount rate of 3.38 (that is, the 30-year Treasury
bond rate).

30The reported private benefits estimates are not rescaled by the relationship between actual and closest distance
discussed in the previous section, which would imply smaller private benefits for each policy.
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of using public funds for these policies is outside the scope of this paper.

Because estimates of the externality of lead exposure ei are not available, I use a value of

$5,617. This figure is based on estimates in Gazze et al. (2019) that a lead-poisoned child decreases

all of their peers’ test scores by 0.01 standard deviations per grade.31 Because this value omits the

crime costs of lead poisoning, it likely underestimates the total externality of lead poisoning.32 All

the screening policies I study appear to be cost-effective for externality values lower than $5,617.

First, I simulate the effect of giving households incentives for screening, following a large lit-

erature on immunization incentives (Banerjee et al. 2010, Bronchetti et al. 2015). I assign variable

incentives based on the zip code average realized travel distance, valued at 1.2 minutes per kilome-

ter and $25 per hour ($10.5 on average). I identify the marginal children screened under this policy

as those whose WTP turns from negative to positive under the counterfactual policy, weighting

by the realized probability of screening for a given WTP . Column 1 of Table 5 shows that this

policy may benefit the marginal households, although this term is not statistically significant and it

is lower than the incentives disbursed as many inframarginal households receive subsidies.

Second, I consider a pay-for-performance incentive for low-performing providers. Although

pay-for-performance programs among physicians have had mixed success (Li et al. 2014), physi-

cians appear to respond to increased payments (Alexander & Schnell 2019). For providers in

high-risk zip codes with screening rates lower than 50 percent, I assume the policy leads them to

screen an additional random 10 percent of children in their catchment area. Column 2 of Table

5 shows that this policy would lead to screening around four times more children than the house-

hold incentive, but achieve a similar, and similarly statistically insignificant, private benefit, due to

poorer targeting. Dividing the policy’s private benefits among the 216 providers affected yields an

incentive of $1,230, or $5.24 per additional child.

Third, I simulate a provider opening at the centroid of each zip code without providers in 2014.

31I use estimates by Chetty et al. (2014) that a one-standard-deviation decrease in test scores is associated with a
12 percent decrease in earnings at 28 and 2018 Current Population Survey data to compute a lifetime earnings profile,
assuming a growth rate of real labor productivity of 1.9 percent and a discount rate of 3.38 (that is, the 30-year Treasury
bond rate).

32As a reference, Heckman et al. (2010) estimate that 38–66 percent of the value of preschool programs is at-
tributable to crime reductions.
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In the past, lead screening was offered at the Special Supplemental Nutrition Program for Women,

Infants, and Children, the single largest point of access to health-related services for low-income

preschool children in the US (General Accounting Office 1999). Alternatively, pharmacies could

acquire lead screening kits at a cost of $382 for 48 tests. Column 3 of Table 5 shows that this policy

would only screen 882 more children, consistent with households viewing even small distances as

hassles. Although insignificant, the benefits for these marginal children could be higher than the

program’s cost because capillary screening kits are cheap.

Fourth, I consider a mandate to screen all children in homes built prior to 1930, which lever-

ages observable exposure risk to target screening. Column 4 of Table 5 shows that, compared to

the screening incentive in Column 1, this policy yields fewer additional screenings and lower pri-

vate benefits, but similar rates of poisoning detection. This result is consistent with the finding in

Section 4.2 that households do not self-select into screening based on better information about un-

observable risk. Thus, the social planner may be able to target screening based only on observable

risk. However, it may be prohibitively costly to screen all children in old homes.

Fifth, I consider a policy that keeps screening constant but assumes perfect remediation after

EBLL detection, preventing new lead poisoning cases at homes with previous cases. In the 2014

cohort, 638 homes had an EBLL. Because 10.3 percent of addresses with EBLLs in the 2001–2003

cohorts have another child with EBLLs within 10 years, I assume that remediating these 638 homes

would prevent 66 new cases. The average remediation cost in the HUD data for the 2010–2016

period is $10,646, suggesting lead poisoning externalities need to be on the order of $100,000 for

remediations to be cost-effective in terms of prevention benefits only. Importantly, I do not have

estimates of averted case management costs that would factor in prevention benefits.

This section evaluates the social benefits of five screening and remediation policies. Overall,

I find that policies increasing screening rates have modest and statistically insignificant private

benefits for marginal children, but may be cost-effective after taking into account lead-poisoning

externalities as small as $3,500. Specifically, I consider a screening subsidy, which allows house-

holds with the highest WTP at the margin to select into screening, and find that even this policy has
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small private benefits. Then, I consider supply-side policies such as a pay-for-performance (PFP)

incentive and an increase in provider locations, and find that while both have worse targeting out-

comes than the screening subsidy, PFP leads to higher screening rates and thus higher poisoning

detection rates. To better study targeting, I next consider a screening mandate in old homes, and

find that it leads to similar poisoning detection rates as the subsidy, suggesting that households

do not have private information on unobservable risks. Finally, I examine perfect remediation and

find it not to be cost-effective because of the uncertainty in turnover of residents at each address.

6 Conclusion

Lead paint in millions of US homes potentially endangers children’ health. Lead poisoning preven-

tion programs rely on childhood blood lead screening to identify these hazards, but screening may

create hassles for families with small children. This paper examines screening take-up in Illinois

and evaluates counterfactual prevention policies. I find that travel costs decrease screening but do

not affect selection into screening based on either observable or unobservable exposure risk. The

relatively low incidence of lead poisoning implies that households have a low average willingness-

to-pay for screening. Thus, policies incentivizing screening have low private benefits, yet may be

cost-effective when accounting for societal benefits from averted poisoning externalities.

My findings suggest that decreasing travel costs, for example through subsidies, could increase

screening without reducing targeting efficiency. Yet, this paper leaves a few open questions for

further research. First, because provider quality affects screening, provider training may cost-

effectively increase screening. Second, increased provider access appears to improve timely detec-

tion of lead poisoning but is not associated with higher remediation activity, casting doubt on the

effectiveness of case management. Third, my analysis compares my estimates of the willingness-

to-pay for screening to back-of-the-envelope estimates of screening benefits. I am collecting ed-

ucation and behavioral outcome data from the Chicago Public Schools to directly estimate the

benefits of screening and of early poisoning detection.
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Figure 1: Number of Children Born, Screened, and with BLLs 10+, 2014 Cohort
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Notes: The figure plots the number of children born, screened, and with blood lead levels 10+ in the 2014 cohort in
the whole sample and for the sample of children in pre-1930 and 1930-1978 homes.

Figure 2: Screening Rates by Zip Code Risk, 2014 Cohort
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Notes: The figure plots screening rates by age two in the 2014 Illinois birth cohort by risk-level in the birth zip code.
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Figure 3: Relationship between Distance and Screening Rates, by Risk
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Notes: The figure illustrates the screening predictions from the ordeals model. The left panel plots hypothetical
screening rates by distance for low risk (L) and high risk (H) households. The right panel plots the share of screened
children who are high risk by distance as implied by the relationships plotted in the left panel.

Figure 4: Distance to Closest Provider Predicts Distance Travelled
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Notes: The figure plots average distance travelled to see a provider, in kilometers, for each vintile of distance between
address at test and closest provider, in kilometers (blue dots) as well as the fitted line after partialling out block and
year fixed effects.
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Figure 5: Year-by-Year Effects of Openings and Closings
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(b) Block Level
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Notes: The figure plots DD coefficients on year-by-year entry and exit dummies, at the tract (Panel A) and block
(Panel B) level. The outcome variable is the screening rate. Coefficients on entry and exit in each panel are estimated
in a single regression. The vertical line indicates the entry or exit period. For neighborhoods with entries or exits
the sample is limited to a balanced panel in the [-4,4] window around the entry or exit. Neighborhood and year fixed
effects are included. T-1 is the omitted category. The vertical bars are 95 percent confidence intervals. Standard errors
are clustered at the neighborhood level.
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Figure 6: Determinants of Screening: Distance to Providers
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Notes: The figure plots the average likelihood of a child being screened by age two by distance to closest open provider.
The bars in the left panel show the number of children in each distance bin on the left y-axis, and the line represents
their screening rates on the right y-axis. The right panel plots screening rates for each distance bin relative to children
born 20 kilometers or further from open providers controlling for children and home characteristics (short-dash line),
zip fixed effects (grey long-dash line), and block fixed effects (black line).
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Figure 7: Determinants of Screening: Provider Quality
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Notes: The figure plots the effect of having any provider (blue bars), a high-quality provider based on the definition
in each panel (orange bars) and a provider who attended a top 20 medical school (green bars) within each concen-
tric buffer indicated on the x-axis on screening take-up. The quality index includes screening rates in a provider’s
catchment area, as well as a provider’s rate of follow up within 90 days on cases of EBLLs and a provider’s rate of
adherence to Medicaid guidelines, that is the rate at which children on Medicaid screened by that provider at age one
have a second test at age two. Providers’ catchment areas are computed based on the median distance of children to
their screening providers in my sample. Within catchement areas, I compute provider-level screening rates by weight-
ing unscreened children by the inverse of their distance to the provider. The sample includes all geocoded children
born 2001-2014 whose closest provider is within 20 kilometers. Each regression includes birth year and block fixed
effects. Vertical bars display 95% confidence intervals based on standard errors clustered at the zip code level.
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Figure 8: Determinants of Screening: Latent Exposure
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Notes: The figure plots coefficients of a linear probability model on the likelihood of a child being screened by age
two. The figure shows the vintage-by-vintage impact on screening of living in a home built in a particular year relative
to homes built in 1978. The regression includes block and birth year fixed effects, as well as demographic controls.
Vertical bars display 95% confidence intervals based on standard errors clustered at the zip code level.
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TABLES TABLES

Table 1: Determinants of Screening: Provider Distance

Dependent Variable: Screened by Age 2
(1) (2) (3) (4) (5)

Panel A: Continuous Distance

Distance to Closest -0.008*** -0.004*** -0.004*** -0.004*** -0.003***
Open Provider (0.001) (0.000) (0.001) (0.001) (0.001)

Panel B: Binned Distance

Closest Open Provider 0.072*** 0.040*** 0.040*** 0.041*** 0.032***
within 1Km (0.008) (0.006) (0.007) (0.009) (0.012)
Closest Open Provider 0.055*** 0.026*** 0.028*** 0.033*** 0.023*
1-2Km (0.007) (0.006) (0.007) (0.009) (0.012)
Closest Open Provider 0.030*** 0.015** 0.017** 0.028*** 0.012
2-5Km (0.007) (0.006) (0.007) (0.009) (0.012)
Closest Open Provider -0.011* -0.006 0.001 0.013* 0.006
5-10Km (0.006) (0.005) (0.005) (0.007) (0.010)

Mean Outcome Variable 0.46 0.46 0.46 0.46 0.47
N 2050536 2050553 2050533 2018383 1463352
Zip Code FE X
Tract FE X
Block Group FE X
Block FE X
Home FE X

Notes: ∗p< 0.10,∗∗ p< 0.05,∗∗∗ p< 0.01. The table displays the impact of distance to the closest provider open during
a child birth year on the likelihood of a child being screened by age two. Panel A reports the effect of a continuous
distance measure in kilometers, while Panel B reports the effect of binned distance indicators. The sample includes all
geocoded children born 2001-2014 whose closest provider is within 20 kilometers. Each column includes birth year
fixed effects and a set of location fixed effects for the location indicated at the bottom of each column. Standard errors
clustered at the zip code level in parentheses.

40



TA
B

L
E

S
TA

B
L

E
S

Table 2: Selection into Screening Conditional on Distance

Dependent Variable: BLL 10+ BLL By Home Black Hispanic Single Mother 20 Mother High
By Age 2 Age 2 Pre1930 Mother or Younger School or Less

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Tract and Year FE

Distance to Closest -0.0003** -0.0052* -0.0047*** -0.0023*** -0.0021*** -0.0019*** -0.0002 -0.0008
Open Provider (0.000) (0.003) (0.001) (0.000) (0.001) (0.001) (0.000) (0.001)

Panel B: Block and Year FE

Distance to Closest -0.0004 -0.0084 -0.0012** -0.0004 -0.0002 0.0006 0.0002 -0.0004
Open Provider (0.000) (0.007) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001)

Mean Outcome Variable 0.02 2.93 0.46 0.23 0.33 0.49 0.12 0.16
N 890091 890091 645177 890091 890091 890091 890091 890091

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child birth year on selection into screening
by age 2. The sample includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers and who are screened. Outcome variables are
indicated in each column. Panel A reports the effects controlling for the child’s birth tract, Panel B controls for child’s birth block. Each regression includes birth
year fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table 3: Effect of Proximity to Providers on EBLL Detection, Detection Timing, and Prevention

Dependent Variable: BLL 10+ Age at Age at Remediation Future BLL 10+
Detected First Test Highest Test within 3 Years Detected

(1) (2) (3) (4) (5)

Distance to Closest -0.0003*** 0.1934*** 0.1811*** 0.0000 -0.0002
Open Provider (0.000) (0.051) (0.050) (0.000) (0.000)

Mean Outcome Variable 0.009 20.434 21.325 0.001 0.016
N 2018383 1194748 1194748 2018383 476357
Block FE X X X X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child birth year on the outcome indicated
in each column. The sample includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers. Each column includes birth year and
block fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table 4: Heterogeneity in Willingness to Pay for Screening

Sample: All Home Vintage Black Hispanic Single Mother Mother 20 or Younger
Pre1930 1930-1978 Post1978 No Yes No Yes No Yes No Yes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: Logit Marginal Effects

Distance to Closest -0.007*** -0.004** -0.006*** -0.008*** -0.007*** -0.002 -0.007*** -0.001 -0.011*** 0.004*** -0.008*** 0.004**
Open Provider (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.001) (0.002) (0.001) (0.002)

Panel B: OLS Coefficients

Distance to Closest -0.005*** -0.003* -0.004*** -0.006*** -0.005*** -0.003 -0.005*** -0.003 -0.008*** 0.004*** -0.006*** 0.004***
Open Provider (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001)

Panel C: Average Willingess to Pay

Average WTP ($) -6.787** 6.141*** -4.603*** -23.015 -6.588*** 5.591 -7.620*** 6.615* -4.979*** 0.687*** -3.592*** 2.541***
(3.172) (1.686) (0.704) (18.080) (2.485) (3.586) (2.640) (3.962) (0.243) (0.113) (0.242) (0.374)

Mean Outcome Variable 0.463 0.600 0.453 0.288 0.438 0.572 0.406 0.604 0.391 0.585 0.449 0.602
N 1451137 505167 578901 367069 1189347 261790 1036904 414233 916396 534741 1323733 127404

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the marginal effects of distance to providers on the likelihood of a child being screened by age
two from logit (Panel A) and OLS (Panel B) models on different subsamples indicated in each column. Estimates for each set of columns, that is home vintages
(Columns 2-4), race (Columns 5-6), ethnicity (Columns 7-8), mother’s marriage status (Columns 9-10), and mother’s age (Columns 11-12), are estimated in a single
regression that interacts distance with the characteristic indicator in each column. Panel C reports average willingness-to-pay for screening in each subsample as
estimated by the logit model in Panel A. The sample includes all geocoded children born 2001-2014 whose birth address matched a parcel record, and whose closest
provider is within 20 kilometers and either opened or closed during their birth year. Each column includes birth year indicators, child-level demographic controls,
and block-level averages of all included regressors. Standard errors clustered at the zip code level in parentheses.
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Table 5: Policy Counterfactuals

Policy: Household Provider Diffused Pre1930 Screening Remediation
Incentive Incentive Screening Mandate Follow-Through

(1) (2) (3) (4) (5)

Additional Children Screened, 1,000 15.91 50.70 0.88 11.31

Additional BLLs 10+ Detected, 1,000 0.14 0.43 0.01 0.15

Change in Private Welfare, $1,000 370.09 265.70 9.92 194.83
(447.60) (861.27) (9.97) (249.49)

Externality, $1,000 759.54*** 2420.85*** 42.10*** 833.98***
(229.20) (730.52) (12.70) (251.66)

Prevention, $1,000 391.99***
(118.29)

Total Benefits, $1,000 1129.63 2686.55 52.02 1028.81 391.99

Cost, $1,000 434.71 1774.47 7.02 6792.15

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of the counterfactual policies in each column on the 2014 cohort. Additional cases
detected are the product of additional children screened and the poisoning probability in the 2014 cohort (0.0085) except in Column 4 which uses the poisoning
probability conditional on living in an old home (0.0131). The sum of the additional children’s WTP yields the private benefits of each policy. WTP is estimated in
a logit model that includes demographic and block-group level controls. The externality of each EBLL case is assumed to be $5,617. Household incentives average
$10.5. Columns 1 and 3 count children whose willingness-to-pay (WTP) turns positive under the policy as additionally screened. Column 2 simulates increases
in screening rates for low-screening providers in high-risk zip codes of 10 percentage points. Column 3 simulates providers opening at the zip code centroid for
each zipcode-year cell without open providers, at $7.96 per test. Column 4 assumes remediations in 638 homes with EBLLs in 2014 prevent 66 new cases in the
following ten years, at the baseline re-poisoning rate of 10.3 percent, for an externality benefit of $8,794 each. Average remediation cost are $10,646 per house.
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Figure A.1: Match Rate between Blood Lead Levels and Birth Records
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Notes: The figure plots the percent of tests successfully linked to birth records by birth cohort as recorded in the test
data.

Figure A.2: Distribution of Test Results of Laboratory with Cutoff at 5 µg/dL

Notes: The figure plots the number of tests on the y axis by BLL result on the x axis for one laboratory in our sample.
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Figure A.3: Location of Providers Operating in IL in 2001 and 2014

Notes: The figure plots the distribution of open providers in Illinois in high and low risk zip codes in the years 2001
(left) and 2014 (right).

Figure A.4: Distance to Providers
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Notes: The figure plots the distribution of distance in kilometers from children’s birth address to the closest provider
open during the child’s birth year. Distance is censored at 20km for ease of visualization. The red vertical line indicates
the mean of the variable in the uncensored data.
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Figure A.5: Distance to Providers
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Notes: The left panel plots the distribution of distance in kilometers between children’s address at test and the provider
associated with the test. The right panel plots the distribution of the difference in kilometers between distance traveled
at test and minimum distance between address at test and the closest active provider during the test’s year. In both
graphs, distance is censored at 20km for ease of visualization. The red vertical line indicates the mean of the variable
in the uncensored data.

Figure A.6: Follow-up Rates
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Notes: The figure plots follow-up rates in IL for tests that identify an EBLL by risk-level in birth zip code.
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Figure A.7: Providers: Correlation in Quality Measures
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Notes: The figure plots on the y axis the average z-scores of adherence to follow-up guideline (left panel) and screening
rate (right panel) by ranking of the medical school each provider earned their degrees at on the x axis.

Figure A.8: Providers: Correlation between Provider Quality and Neighborhood Characteristics
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Notes: The figure plots on the y axis the share of providers who are from top 20 medical schools (left panel) and who
have a quality index above median (right panel) by share of black children born in the provider’s census block group
on the x axis.
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Figure A.9: Location of Providers, by Quality

Notes: The figure plots the distribution of open providers by quality (left panel) and ranking of medical school of
record (right panel) in Illinois in high and low risk zip codes over the years 2001-2014. High-quality providers are
defined as having a quality index above median.

Figure A.10: Cumulative Distribution of Age at First Blood Lead Test
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Notes: The figure plots the cumulative distribution of age of first test in Illinois over time.
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Figure A.11: Correlation between Car Ownership and Housing Age
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Notes: The figure plots the average car ownership rates by quantiles of share of pre1930 homes in Census tract, using
2000 Census data and fits a quadratic line.
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Table A.1: Summary Statistics: Children

Sample: Whole Sample Screened Children
Mean Standard Deviation Mean Standard Deviation

(1) (2) (3) (4)

Home Pre1930 0.348 0.476 0.451 0.498

Home 1930-1977 0.399 0.490 0.391 0.488

Low Income 0.278 0.448 0.366 0.482

Black 0.179 0.383 0.226 0.418

Hispanic 0.246 0.431 0.319 0.466

Single Mother 0.384 0.486 0.490 0.500

Mother 20 or Younger 0.091 0.287 0.119 0.324

Mother Less than High 0.012 0.109 0.019 0.137
School
Mother High School, 0.103 0.304 0.135 0.342
No Diploma
EBLL within a Year of Birth 0.054 0.226 0.079 0.269
within 15m
EBLL within a Year of Birth 0.126 0.332 0.172 0.378
15-100m
Chicago Born 0.283 0.450 0.380 0.485

High Risk Zip excl. Chicago 0.169 0.375 0.204 0.403

Screened by Age 2 0.456 0.498 1.000 0.000

Highest BLL by Age 2 2.919 2.596 2.919 2.596

BLL 10+ by Age 2 0.020 0.140 0.020 0.140

Distance to Closest 2.279 3.195 1.934 3.004
Open Provider
Has Provider w/ 0.308 0.462 0.382 0.486
Capillary in 1Km
Has High Quality 0.295 0.456 0.374 0.484
Provider in 1Km
Has Provider w/ 0.033 0.178 0.039 0.193
Top20 Degree in 1Km

N 2050536 934099

Notes: The table displays summary statistics for the covariates in the sample. Columns 1-2 include all geocoded
children whose birth address matched a parcel record for birth cohorts 2001-2014, while Columns 3-4 limit the sample
to children whose birth address is within 2 kilometers of a provider opening or closing during their birth year.
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Table A.2: Sample Size and Linkages

Children with 

Birth Records

# Tests # Children # Tests # Children # Children

(1) (2) (3) (4) (5)

Total 5,403,722 2,653,402 5,403,722 2,653,402 4,465,487

Matched to Birth Record 4,692,618 2,166,694 4,685,569 2,160,081 4,465,487

Geocoded 3,587,020 1,820,517 4,167,897 1,903,385 3,847,728

Born between 2001-2014 2,664,302 1,392,758 2,935,018 1,281,933 2,123,496

Linked to Parcel Data 1,926,388 1,007,129 2,144,859 890,637 1,466,015

Drop follow-up 1,851,106 1,004,026 2,064,753 890,637 1,466,015

1,850,783 1,003,859 1,722,482 780,980 1,465,336

Tests Linked to Test Address Test Linked to Birth Address

Linkage with Census 

Block Data

Notes: The table displays the number of tests and unique children in my original sample (first row) and those remaining after each data cleaning and linkage step.
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Table A.3: Screening Rates and Average Blood Lead Levels

Geocoded Non-Geocoded Geocoded Non-Geocoded

Screening Rate (%) 60% 58% 76% 74%

Avg. Blood Lead Level (ug/dL) 2.55 2.52 2.40 2.39

ChicagoIllinois

Notes: The table displays the screening rates and average blood lead levels in Illinois and Chicago, respectively, in the
sample of geocoded (Columns 1 and 3) and non-geocoded (Columns 2 and 4) births (for screening rates) and tests (for
average BLLs).
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Table A.4: Sample Size and Extent of Lead Exposure

Number of 

Tests, Excl. 

Follow-Up

Number of Tests, 

Excl. Follow-Up, 

Linked to Covariates

Number of 

Children

(1) (2) (3)

Panel A: Any Test Type

Total 2,557,184 1,594,313 953,749

Elevated (>10ug/dL) 77,919 37,310 27,175

Confirmed Elevated 70,171 32,319 22,579

Panel B: Capillary Tests

Total 990,734 729,945 512,185

Elevated (>10ug/dL) 25,463 15,384 14,125

Confirmed Elevated 17,715 10,393 11,305

Panel C: Venous Tests

Total 1,566,449 864,367 538,225

Elevated (>10ug/dL) 52,456 21,926 14,827

Notes: The table displays the number of tests (Column 1), number of tests excluding those that are within 90 days of a
previous test (Column 2), and the number of children (Column 3) in my sample (Total) and those that display elevated
levels, for any test (Panel A), capillary (Panel B), and venous (Panel C). I show separately the number of confirmed
capillary tests, that is capillary tests that are followed up by another elevated level within 90 days, be it venous or
capillary.
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Table A.5: Summary Statistics: Providers

Mean Standard Deviation
(1) (2)

Years Open 8.172 6.051

Individual Provider 0.242 0.428

Top20 Degree 0.029 0.168

Top 21-50 Degree 0.175 0.380

Unranked Degree 0.685 0.465

Performs Capillary 0.636 0.481

High Quality 0.703 0.457

N 4542

Notes: The table displays summary statistics for the providers in the sample.
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Table A.6: Distance to Closest Provider Predicts Distance Travelled

Dependent Variable: Actual Distance Travelled
(1) (2) (3) (4)

Panel A: Whole Sample

Distance to Closest 2.572*** 2.582*** 2.733*** 3.566***
Open Provider (0.188) (0.198) (0.216) (0.324)

Mean Outcome Variable 12.72 12.60 12.60 12.38
N 1046307 985141 985116 947501

Panel B: Households in Pre1930 Homes

Distance to Closest 4.858*** 4.862*** 5.152*** 6.597***
Open Provider (0.460) (0.466) (0.494) (0.562)

Mean Outcome Variable 9.95 9.95 9.95 9.83
N 367850 367787 367493 358726

Zip Code FE X
Tract FE X
Block Group FE X
Block FE X

Notes: The table displays the impact of distance to the closest provider open during the year of a test on the actual
distance travelled to get the test. Panel A includes all geocoded children born 2001-2014 whose closest provider is
within 20 kilometers. Panel B further limits the sample to children in homes built prior to 1930. Each column includes
year fixed effects and a set of location fixed effects for location indicated at the bottom of each column. Standard
errors clustered at the zip code level in parentheses.
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Table A.7: Provider Choice: Mother’s Education and Provider Quality

Dependent Variable: Distance Traveled Performs Follow Up Medicaid Screening Top 20
over Minimum Capillary Rate Guidelines Rate Med School

(1) (2) (3) (4) (5) (6)

High School, 0.341*** 0.003 -0.014** -0.048*** -0.024 0.006**
No Diploma (0.059) (0.004) (0.007) (0.011) (0.018) (0.002)
High School 0.599*** 0.008* 0.002 -0.075*** -0.030 0.005**
Diploma (0.075) (0.004) (0.007) (0.013) (0.020) (0.002)
Some College 0.961*** 0.006 0.020** -0.132*** -0.086*** 0.006**

(0.078) (0.004) (0.008) (0.016) (0.022) (0.002)
College Degree 1.228*** 0.019*** 0.069*** -0.246*** -0.055 0.009**
(4 Years) (0.106) (0.005) (0.010) (0.021) (0.039) (0.004)
More than College 1.265*** 0.021*** 0.083*** -0.305*** -0.024 0.013***

(0.116) (0.005) (0.011) (0.023) (0.044) (0.005)
Unknown 0.740*** 0.021*** 0.015 -0.093*** -0.007 -0.003

(0.091) (0.006) (0.011) (0.021) (0.033) (0.003)

Mean Outcome 4.49 0.89 0.17 0.19 1.73 0.03
N 743207 996858 971138 813208 739903 996858
Block FE X X X X X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the correlation between a monther’s education and the distance the household travels to visit a
provider for lead screening (Column 1) and the quality of the provider visited (Columns 2-6). Outcomes in Columns 3-5 are z-scores. Each column includes birth
year and census block fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table A.8: Determinants of Lead Exposure

Dependent Variable: Highest BLL by Age 2 BLL 10+ by Age 2
(1) (2) (3) (4)

Home Pre1930 0.422*** 0.316*** 0.010*** 0.008***
(0.026) (0.023) (0.001) (0.001)

Home 1930-1977 0.030* 0.067*** -0.001* 0.000
(0.016) (0.019) (0.001) (0.001)

Low Income 0.009 -0.002***
(0.014) (0.001)

Black 0.259*** 0.181*** 0.004* 0.002**
(0.050) (0.026) (0.002) (0.001)

Hispanic -0.157*** -0.114*** -0.007*** -0.004***
(0.023) (0.017) (0.001) (0.001)

Single Mother 0.026** 0.026** 0.001* 0.001***
(0.010) (0.011) (0.000) (0.001)

Mother 20 or Younger 0.037*** 0.021 0.000 -0.001*
(0.014) (0.015) (0.001) (0.001)

Mother Less than High 0.040 0.053* 0.003*** 0.005***
School (0.028) (0.031) (0.001) (0.001)
Mother High School, 0.155*** 0.149*** 0.005*** 0.005***
No Diploma (0.017) (0.017) (0.001) (0.001)
EBLL within a Year of Birth 2.186*** 2.018*** 0.165*** 0.155***
within 15m (0.140) (0.143) (0.010) (0.011)
EBLL within a Year of Birth 0.119*** 0.035** 0.000 -0.002**
15-100m (0.017) (0.018) (0.001) (0.001)

Mean Outcome Variable 2.97 2.99 0.02 0.02
N 671194 645218 671194 645218
Zip FE X X
Block FE X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays estimates of the impact of various variables on a child’s
maximum blood lead level (Columns 1-2) and likelihood of having an elevated blood lead level (Columns 3-4) by age
two. The sample includes all geocoded children born 2001-2014 whose birth address matched a parcel record, and
whose closest provider is within 20 kilometers. Each column includes birth year and block fixed effects. Standard
errors clustered at the zip code level in parentheses.
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Table A.9: Lagged Determinants of Providers’ Entry and Exit, Neighborhood Level

Dependent Variable: Entry Exit Distance To Entry Exit Distance To
Closest Provider Closest Provider

Neighborhood Level Tract Block
(1) (2) (3) (4) (5) (6)

Number of Providers -0.0445*** 0.1794*** -0.1424*** -0.0509** 0.2575*** -0.2172***
(0.009) (0.012) (0.036) (0.022) (0.029) (0.080)

Number of Births 0.0001 0.0001 -0.0024 0.0000 0.0000 0.0014
(0.000) (0.000) (0.002) (0.000) (0.000) (0.001)

Share Screened 0.0158 0.0126 -0.3001 0.0001 -0.0003 -0.0063
(0.012) (0.013) (0.191) (0.000) (0.000) (0.012)

Average BLL 0.0005 0.0009 -0.0598** 0.0000 0.0000 -0.0017
0.001 (0.002) (0.027) (0.000) (0.000) (0.001)

Share Homes Pre-1930 0.0152 -0.0052 -0.2432 -0.0003 0.0000 0.0135
(0.012) (0.014) (0.303) (0.000) (0.000) (0.017)

Share Black 0.0122 0.0732*** 0.1365 0.0003 0.0003 0.0024
(0.025) (0.028) (0.243) (0.000) (0.000) (0.013)

Share Hispanic 0.0227 0.0087 -0.1596 -0.0001 0.0001 -0.0129
(0.021) (0.023) (0.203) (0.000) (0.000) (0.009)

Share Single Mothers 0.0006 0.0150 -0.4121 0.0002* 0.0000 -0.0232**
(0.015) (0.016) (0.342) (0.000) (0.000) (0.011)

Share Mothers 20 -0.0486** -0.0159 0.3604 -0.0003** -0.0001 0.0139
or Younger (0.020) (0.026) (0.392) (0.000) (0.000) (0.013)
Share Mothers High School 0.0368** 0.0368** 0.0280 0.0000 0.0003 -0.0159
or Less (0.019) (0.018) (0.247) (0.000) (0.000) (0.011)

Mean Outcome Variable 0.0398 0.0535 2.8021 0.0005 0.0008 1.6101
N 32019 32019 32019 361900 361900 361830

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the correlates of the likelihood that a provider opens (Columns 1,4) or closes (Columns 2,5) and
average distance to providers (Columns 3,6) in a given year at different neighborhood levels. Observations in Columns 1-3 are at the tract-year level and in Columns
4-6 at the block-year level. Characteristics are lagged by one year, and all reflect births except for BLLs and number of providers. Each column includes year fixed
effects and the neighborhood fixed effects indicated at the top of each column. Standard errors clustered at the neighborhood level in parentheses.
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Table A.10: Determinants of Screening: Provider Access, Robustness Checks

Dependent Variable: Screened by Age 2 (1) (2) (3) (4) (5) (6) (7)

Distance to Closest Open Provider -0.0005** -0.0028*** -0.002*** -0.001*** -0.004*** -0.003*** -0.005***
(0.000) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

Distance to Closest Open Provider X 20+km Away 0.0027***
(0.001)

20+km Away -0.0239
(0.015)

Black 0.047*** 0.051***
(0.004) (0.005)

Hispanic 0.110*** 0.110***
(0.005) (0.005)

Single Mother 0.051*** 0.042***
(0.004) (0.004)

Mother 20 or Younger 0.016*** 0.013***
(0.002) (0.002)

Mother High School 0.005 0.006*
or Less (0.003) (0.003)
Home Pre1930 0.050***

(0.006)
Home 1930-1977 0.050***

(0.004)
EBLL within a Year of Birth within 15m 0.061***

(0.005)
EBLL within a Year of Birth 15-100m 0.010***

(0.003)

Mean Outcome Variable 0.46 0.46 0.46 0.46 0.46 0.46 0.46
N 2076225 2076225 2050533 2018383 2018351 2018383 1434900
Block FE X X X X X X
Block Group FE X
Block Group Trend X
Distance Measure: Avg of 5 Closest Providers X
Distance Measure: From Block Centroid X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child birth year on the likelihood of a
child being screened by age two. Columns 4 and 5 use different distance measures, indicated at the bottom of those columns. The sample includes all geocoded
children born 2001-2014 whose birth address matched a parcel record. Columns 3-7 limit the sample to children within 20km of an open provider. Each column
includes birth year fixed effects and location fixed effects per the bottom of each column. Standard errors clustered at the zip code level in parentheses.
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Table A.11: Determinants of Screening: Provider Access, by Zip Code Risk and Birth Order

Dependent Variable: Screened by Age 2
Sample: Chicago High-Risk w/out Chicago Low-Risk First Born Non-First Born

(1) (2) (3) (4) (5)

Panel A: Tract and Year FE
Distance to Closest -0.011** -0.002* -0.003*** -0.003*** -0.004***
Open Provider (0.005) (0.001) (0.001) (0.001) (0.001)

Panel B: Block and Year FE
Distance to Closest -0.008 -0.001 -0.003*** -0.004*** -0.003***
Open Provider (0.006) (0.002) (0.001) (0.001) (0.001)

Mean Outcome Variable 0.61 0.55 0.34 0.45 0.46
N 576731 330241 1100179 1414724 549499

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child birth year on the likelihood of
a child being screened by age two for different subsamples indicated in each column. The sample includes all geocoded children born 2001-2014 whose closest
provider is within 20 kilometers. Each column includes birth year and block fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table A.12: Determinants of Screening: Provider Availability

Access Variable: Accepts New Patients Accepts Medicaid Patients Accepts New & Medicaid Patients
Sample: All Low Income All Low Income All Low Income

(1) (2) (3) (4) (5) (6)

Closest Open Provider 0.018** 0.019 0.025*** 0.020 0.031*** 0.031
within 1Km (0.008) (0.021) (0.009) (0.021) (0.008) (0.021)
Closest Open Provider 0.014* 0.019 0.021** 0.018 0.026*** 0.028
1-2Km (0.008) (0.021) (0.008) (0.021) (0.008) (0.021)
Closest Open Provider 0.015* 0.017 0.020** 0.017 0.024*** 0.025
2-5Km (0.008) (0.023) (0.008) (0.023) (0.008) (0.022)
Closest Open Provider 0.007 0.023 0.010 0.020 0.012* 0.021
5-10Km (0.007) (0.021) (0.007) (0.021) (0.007) (0.020)
Closest Open Provider 0.054*** 0.051*** 0.060*** 0.053*** 0.051*** 0.040***
within 1Km, High Quality (0.009) (0.015) (0.008) (0.012) (0.007) (0.012)
Closest Open Provider 0.046*** 0.043*** 0.052*** 0.046*** 0.044*** 0.035***
1-2Km, High Quality (0.008) (0.015) (0.007) (0.011) (0.006) (0.011)
Closest Open Provider 0.035*** 0.033** 0.041*** 0.038*** 0.031*** 0.025**
2-5Km, High Quality (0.008) (0.014) (0.007) (0.011) (0.006) (0.011)
Closest Open Provider 0.019*** 0.005 0.023*** 0.011 0.018*** 0.005
5-10Km, High Quality (0.007) (0.015) (0.005) (0.012) (0.005) (0.012)
Closest Open Provider 0.009 0.015 0.014** 0.001 0.011** -0.002
10-20Km, High Quality (0.006) (0.015) (0.005) (0.013) (0.005) (0.012)

Mean Outcome Variable 0.46 0.60 0.46 0.60 0.46 0.60
N 2018383 563938 2018383 563938 2018383 563938
Block FE X X X X X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider operating during a child birth year and distance to a
provider possessing the characteristic indicated in each column on the likelihood of a child being screened by age two. The sample includes all geocoded children
born 2001-2014 whose closest provider is within 20 kilometers (odd columns) or among those, only children living in low-income block groups (even columns).
Each column includes birth year and block fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table A.13: Determinants of Screening: Provider Access, Logit Model

Dependent Variable: Screened by Age 1 Screened by Age 2 Screened by Age 6
Specification: OLS Logit OLS Logit OLS Logit

(1) (2) (3) (4) (5) (6)

Distance to Closest -0.003*** -0.027*** -0.005*** -0.027*** -0.005*** -0.023***
Open Provider (0.001) (0.006) (0.001) (0.006) (0.001) (0.005)
Home Pre1930 0.037*** 0.197*** 0.050*** 0.225*** 0.063*** 0.281***

(0.004) (0.023) (0.006) (0.026) (0.006) (0.029)
Home 1930-1977 0.037*** 0.203*** 0.050*** 0.226*** 0.064*** 0.280***

(0.003) (0.019) (0.004) (0.021) (0.005) (0.022)
Black 0.024*** 0.135*** 0.051*** 0.219*** 0.094*** 0.417***

(0.004) (0.020) (0.005) (0.021) (0.005) (0.023)
Hispanic 0.089*** 0.428*** 0.109*** 0.476*** 0.127*** 0.589***

(0.005) (0.022) (0.005) (0.023) (0.005) (0.024)
Single Mother 0.029*** 0.130*** 0.042*** 0.183*** 0.050*** 0.256***

(0.003) (0.015) (0.004) (0.016) (0.004) (0.017)
Mother 20 or Younger 0.003 0.017* 0.013*** 0.060*** 0.019*** 0.132***

(0.002) (0.010) (0.002) (0.009) (0.002) (0.012)
Mother Less High School 0.002 -0.009 0.006* 0.024* 0.012*** 0.091***
or Less (0.003) (0.014) (0.003) (0.014) (0.003) (0.017)
EBLL within a Year of Birth 0.045*** 0.220*** 0.061*** 0.280*** 0.037*** 0.239***
within 15m (0.004) (0.019) (0.004) (0.020) (0.003) (0.020)
EBLL within a Year of Birth 0.004 0.050*** 0.009*** 0.042*** 0.010*** 0.044***
15-100m (0.003) (0.013) (0.003) (0.013) (0.002) (0.013)

Marginal Effect of Distance -0.006*** -0.007*** -0.005***
to Closest Open Provider (0.001) (0.001) (0.001)
Mean Outcome Variable 0.32 0.32 0.46 0.46 0.61 0.61
N 1451137 1451137 1451137 1451137 1451137 1451137

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays OLS coefficients and coefficients and marginal effects from logit models of the impact of distance to
the closest provider operating during a child birth year on the likelihood of a child being screened by age 1 (Column 1-2), age 2 (Column 3-4), and age 6 (Column
5-6). The sample includes all geocoded children born 2001-2014 whose birth address matched a parcel record, and whose closest provider is within 20 kilometers.
Each column includes birth year indicators and block-level averages of all included regressors. Standard errors clustered at the zip code level in parentheses.
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Table A.14: Determinants of Screening: Provider Access, Sample Within 2Km of Entry or Exit

(1) (2) (3) (4) (5)

Panel A: Continuous Distance

Distance to Closest -0.007*** -0.005*** -0.004*** -0.003*** -0.003***
Open Provider (0.001) (0.001) (0.001) (0.001) (0.001)

Panel B: Binned Distance

Closest Open Provider 0.039*** 0.032*** 0.029** 0.027** 0.017
within 1Km (0.012) (0.012) (0.013) (0.014) (0.015)
Closest Open Provider 0.023* 0.019 0.016 0.018 0.008
1-2Km (0.012) (0.012) (0.013) (0.014) (0.015)
Closest Open Provider 0.011 0.010 0.008 0.012 -0.004
2-5Km (0.012) (0.012) (0.013) (0.014) (0.016)
Closest Open Provider -0.009 0.000 0.000 0.005 -0.001
5-10Km (0.014) (0.013) (0.014) (0.014) (0.017)

Mean Outcome Variable 0.48 0.48 0.48 0.48 0.49
N 1653139 1653140 1653117 1637275 1222373
Zip Code FE X
Tract FE X
Block Group FE X
Block FE X
Home FE X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open
during a child birth year on the likelihood of a child being screened by age two. Panel A reports the effect of a
continuous distance measure in kilometers, while Panel B reports the effect of binned distance indicators. The sample
includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers and who are born
within 2 kilometers of a provider entry or exit during their birth year. Each column includes birth year fixed effects
and the location fixed effects indicated at the bottom of each column. Standard errors clustered at the zip code level in
parentheses.
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Table A.15: Selection into Screening Conditional on Distance: Robustness Checks

Dependent Variable: BLL 10+ BLL By Home Black Hispanic Single Mother 20 Mother High
By Age 2 Age 2 Pre1930 Mother or Younger School or Less

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Tract and Year FE

Distance to Closest -0.0003** -0.0044** -0.0043*** -0.0024*** -0.0026*** -0.0026*** 0.0000 -0.0009**
Open Provider (0.000) (0.002) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000)

Panel B: Block and Year FE

Distance to Closest -0.0001 -0.0003 0.0000 0.0001 0.0009** 0.0010* 0.0001 -0.0002
Open Provider (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

Mean Outcome Variable 0.02 2.99 0.46 0.24 0.38 0.48 0.12 0.16
N 697482 697482 645177 697482 697482 697482 697482 697482

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child birth year on selection into screening
by age two. The sample includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers and who are screened. Outcome variables
are indicated in each column. Panel A reports the effects controlling for the child’s birth tract, Panel B controls for child’s birth block. Each regression includes
birth year fixed effects as well as tract or block level time-varying controls such as average BLLs by age 2, share of pre1930 homes, share black, share hispanic,
share single mothers, share teen mothers, and share of mothers with high school education or less. Standard errors clustered at the zip code level in parentheses.
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Table A.16: Effect of Proximity to Providers on Prevention, Robustness Checks for Rare Events

Specification: Low Income Block Block with Remediation Logit Penalized Logit
(1) (2) (3) (4)

Panel A: Remediation within 3 Years

Distance to Provider 0.0000 0.0001 -0.0092 -0.0087
(0.000) (0.002) (0.031) (0.031)

Mean Outcome Variable 0.003 0.052 0.001 0.001
N 563938 54134 1636204 1636204

Panel B: Future BLL 10+ Detected

Distance to Provider -0.0007** -0.0038** 0.0089 0.0089
(0.000) (0.002) (0.011) (0.010)

Mean Outcome Variable 0.073 0.136 0.035 0.035
N 437433 43008 1199562 1199562

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open
during a child birth year on the likelihood of remediation within three years (Panel A) and of future poisoning (Panel
B). The sample includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers, with
further constraints indicated in each column. Standard errors clustered at the zip code level in parentheses, except for
Column 4 which reports standard errors under the assumption of homoscedasticity.
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