
Won-Ki Seo
94 University Avenue

Kingston, Ontario, K7L 3N6, Canada

November 5, 2019

Recruitment Committee
Department of Agricultural Economics
Texas A&M University

Dear Recruitment Committee,

I am interested in the position of Assistant Professor at Texas A&M University. I have en-
closed my current curriculum vita, transcript, job market paper. My area of specialization is
econometrics focusing on high-dimensional/functional time series analysis. Letters of recom-
mendation have been sent under separate cover.

I will be available for interviews at the ASSA meetings in January 2020. If you have any
questions, please contact my advisors or me using the addresses and numbers listed on my
curriculum vitae.

Thank you for your consideration.

Sincerely,

Won-Ki Seo

encl: Curriculum vitae, job market paper, transcripts



WON-KI SEO

DEPARTMENT OF ECONOMICS

QUEEN’S UNIVERSITY

Placement Director Julie Cullen (858) 822-2056 jbcullen@ucsd.edu
Placement Coordinator Cathy Pugh (858) 534-1867 cpugh@ucsd.edu
Placement Coordinator Jackie Tam (858) 822-3502 jytam@ucsd.edu

PERSONAL INFORMATION

Mailing Address : 94 University Avenue, Kingston, Ontario, K7L 3N6, Canada
Email : wkseo@econ.queensu.ca
Website : https://sites.google.com/site/wkseo86/
Marital Status : married to Dakyung Seong (Ph.D candidate at UC Davis), one child (born in 2017)
Citizenship : Republic of Korea

CURRENT POSITION

Sir Edward Peacock Post-doctoral fellow, Department of Economics, Queen’s University, 2018-2020

FIELD OF INTEREST

Econometric theory, Time series econometrics, High-dimensional/functional data analysis

EDUCATION

University of California, San Diego, 2014 - 2018
- Ph.D. in Economics, 2018
- Ph.D. Candidate in Economics, 2017

Sungkyunkwan University, 2005-2012 (Military service leave Sep 2007- Sep 2009)
- M.A., Economics, 2012
- B.Ec., Economics, 2011

HONORS & AWARDS

Sir Edward Peacock Postdoctoral Fellowship, Queen’s University, 2018-2020
Dissertation Fellowship, UCSD, 2018
C.Phil Fellowship, UCSD, 2017-2018
Summer Research Fellowship, UCSD, 2014-2015
Tuition Scholarship, UCSD, 2014-2018
Simsan Merit Fellowship, Sungkyunkwan University, 2011
Academic Excellence Scholarship, Sungkyunkwan University, 2006-2007, 2009-2010
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mailto: cpugh@ucsd.edu
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WORKING PAPERS

· Inference on common stochastic trends in functional time series (Job Market Paper)

· Inference on the dimension of the nonstationary subspace in functional time series (with Morten
Nielsen and Dakyung Seong), submitted to Journal of the American Statistical Association (Sep
2019).

· Extremal behavior of light-tailed Markov-modulated Lévy processes stopped at a state-dependent
Poisson rate (with Brendan Beare and Alexis Akira Toda), submitted to Econometric Theory (Apr
2019).

· Cointegration and representation of cointegrated processes in Banach spaces, submitted to Econo-
metric Theory (Oct 2019).

· Fredholm inversion around a singularity: application to cointegration in Banach space, work in
progress.

PUBLICATIONS

· Representation of I(1) and I(2) Autoregressive Hilbertian processes (with Brendan Beare), Econo-
metric Theory, forthcoming.

· Cointegrated linear processes in Bayes Hilbert space (with Brendan Beare), Statistics and Proba-
bility Letters, 147, 2019, pp. 90-95.

· Cointegrated linear processes in Hilbert space (with Brendan Beare and Juwon Seo), Journal of
Time Series Analysis, 38 (6), 2017, pp. 1010-1027.

PROFESSIONAL ACTIVITIES

Conference Presentations

2019 Annual conference of the CEA, Banff.

Referee Service
Econometric Theory

TEACHING EXPERIENCE

· Queen’s University

Econ 853 : “Applied Econometrics (time series analysis) ” (winter 2019)

· University of California, San Diego

Teaching assistant, 2015-2018

REFERENCES

Brendan K. Beare, University of Sydney, brendan.beare@sydney.edu.au, +61 02 86279414
James G. MacKinnon, Queen’s University, jgm@econ.queensu.ca, +1 613 5332293
Morten Ørregaard Nielsen, Queen’s University, mon@econ.queensu.ca, +61 04 78831932
Alexis Akira Toda, University of California San Diego, atoda@ucsd.edu, +1 858 5343383
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https://drive.google.com/open?id=1LZNEj2gNvO4k-Dg4QaYisS_5HnRN9S5p
https://ideas.repec.org/p/qed/wpaper/1420.html
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https://drive.google.com/open?id=10xUpApGbRZVmwMu_ISh2DniTFjWwlwNU
https://arxiv.org/abs/1701.08149
https://www.sciencedirect.com/science/article/pii/S0167715218303882
https://onlinelibrary.wiley.com/doi/full/10.1111/jtsa.12251
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PARCHMENT ID:  25347415 IDENTIFICATION NUMBER:  A53-08-0423

STUDENT NAME:  Seo ,  Won-Ki DATE AND TIME PRINTED:  10/19/2019 20:37:58

SOCIAL SECURITY NUMBER:  ***-**-3338

--DEGREES AWARDED BY OTHER INSTITUTIONS---

BA 02/11 College in Korea, South

MA 08/12 College in Korea, South

------------------------------------------

STUDENT LEVEL : Graduate

COLLEGE : Graduate Division

DEPARTMENT(S) : Economics

MAJOR(S) : Economics

------------UCSD DEGREES AWARDED----------

AWARD: Candidate in Philosophy CONFERRED: 12/16/17

TERM: Fall Qtr 2017

COLLEGE: Graduate Division

DEPT: Economics

MAJOR: Economics

AWARD: Doctor of Philosophy CONFERRED: 06/15/18

TERM: Spring Qtr 2018

COLLEGE: Graduate Division

DEPT: Economics

MAJOR: Economics

--------------ACADEMIC EVENTS-------------

PHD QUALIFYING EXAM PASSED 09/15/17

PHD ADVANCED TO CANDIDACY 09/28/17

PHD FINAL EXAMINATION PASSED 04/25/18

DOCTORAL DISSERTATION ACCEPTED 05/17/18

Representation Theory for Cointegrated Functional

Time Series

-------------COURSE INFORMATION-----------
Fall Qtr 2014    Graduate

ECON 200A Microeconomics A 4.00 A- 14.80

ECON 205 Mathematics for Economists 4.00 A 16.00

ECON 210A Macroeconomics A 4.00 A- 14.80

ECON 220A Econometrics A 4.00 A+ 16.00

TERM CREDITS PASSED : 16.00 TERM GPA CREDITS : 16.00

TERM GRADE POINTS : 61.60 TERM GPA : 3.85

Winter Qtr 2015  Graduate

ECON 200B Microeconomics B 4.00 A 16.00

ECON 210B Macroeconomics B 4.00 A 16.00

ECON 220B Econometrics B 4.00 A 16.00

ECON 280 Computation 2.00 S 0.00

TERM CREDITS PASSED : 14.00 TERM GPA CREDITS : 12.00

TERM GRADE POINTS : 48.00 TERM GPA : 4.00

Spring Qtr 2015  Graduate

ECON 200C Microeconomics C 4.00 A- 14.80

ECON 210C Macroeconomics C 4.00 A 16.00

ECON 220C Econometrics C 4.00 A+ 16.00

TERM CREDITS PASSED : 12.00 TERM GPA CREDITS : 12.00

TERM GRADE POINTS : 46.80 TERM GPA : 3.90

Fall Qtr 2015    Graduate

ECON 220D Econometrics D 4.00 A 16.00

ECON 272 Finance:T&T Intrtmprl Asset Pr 4.00 A 16.00

MATH 241A Functional Analysis 4.00 A 16.00

TERM CREDITS PASSED : 12.00 TERM GPA CREDITS : 12.00

TERM GRADE POINTS : 48.00 TERM GPA : 4.00

Winter Qtr 2016  Graduate

ECON 220F Econometrics F 4.00 A 16.00

ECON 227 Nonprametrc/SemiPrametrc Methd 4.00 A 16.00

ECON 270 Finance:Core Asset Pricing 4.00 A 16.00

TERM CREDITS PASSED : 12.00 TERM GPA CREDITS : 12.00

TERM GRADE POINTS : 48.00 TERM GPA : 4.00

Spring Qtr 2016  Graduate

ECON 220E Econometrics E 4.00 B 12.00

ECON 222C Workshop in Econometrics 4.00 S 0.00

ECON 500C Teaching Methods in Economics 4.00 S 0.00

TERM CREDITS PASSED : 12.00 TERM GPA CREDITS : 4.00

TERM GRADE POINTS : 12.00 TERM GPA : 3.00

Fall Qtr 2016    Graduate

ECON 222A Workshop in Econometrics 4.00 S 0.00

ECON 250 Labor Economics 4.00 B- 10.80

ECON 285 Pre-Candidacy Presentation 2.00 S 0.00

ECON 296 Original Research Paper 2.00 A 8.00

TERM CREDITS PASSED : 12.00 TERM GPA CREDITS : 6.00

TERM GRADE POINTS : 18.80 TERM GPA : 3.13

Winter Qtr 2017  Graduate

ECON 222B Workshop in Econometrics 4.00 S 0.00

ECON 267 Topics/Environ & Resource Econ 4.00 A 16.00

ECON 500B Teaching Methods in Economics 4.00 S 0.00

TERM CREDITS PASSED : 12.00 TERM GPA CREDITS : 4.00

TERM GRADE POINTS : 16.00 TERM GPA : 4.00

Spring Qtr 2017  Graduate

ECON 281 Special Topics in Economics 4.00 A 16.00

ECON 285 Pre-Candidacy Presentation 2.00 S 0.00

ECON 286 Grad Resrch Presntation Worksh 3.00 S 0.00

ECON 296 Original Research Paper 3.00 A 12.00

TERM CREDITS PASSED : 12.00 TERM GPA CREDITS : 7.00

TERM GRADE POINTS : 28.00 TERM GPA : 4.00
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PARCHMENT ID:  25347415 IDENTIFICATION NUMBER:  A53-08-0423

STUDENT NAME:  Seo ,  Won-Ki DATE AND TIME PRINTED:  10/19/2019 20:37:58

SOCIAL SECURITY NUMBER:  ***-**-3338

Fall Qtr 2017    Graduate

ECON 212A Workshop in Macroeconomics 4.00 S 0.00

ECON 222A Workshop in Econometrics 4.00 S 0.00

ECON 286 Grad Resrch Presntation Worksh 3.00 S 0.00

ECON 500A Teaching Methods in Economics 4.00 S 0.00

TERM CREDITS PASSED : 15.00 TERM GPA CREDITS : 0.00

TERM GRADE POINTS : 0.00 TERM GPA : 0.00

Winter Qtr 2018  Graduate

ECON 299 Research in Economics 9.00 S 0.00

ECON 500B Teaching Methods in Economics 4.00 S 0.00

TERM CREDITS PASSED : 13.00 TERM GPA CREDITS : 0.00

TERM GRADE POINTS : 0.00 TERM GPA : 0.00

Spring Qtr 2018  Graduate

ECON 299 Research in Economics 9.00 S 0.00

ECON 500C Teaching Methods in Economics 4.00 S 0.00

TERM CREDITS PASSED : 13.00 TERM GPA CREDITS : 0.00

TERM GRADE POINTS : 0.00 TERM GPA : 0.00

------------------SUMMARY-----------------
GRADE
OPTION

UC-CRDTS
ATTM

UC-CRDTS
COMPL

CRDTS
PSSD

UC-GPA
CRDTS

UC-GRADE
POINTS

UC-
GPA

Letter 85.00 85.00 85.00 85.00 327.20 3.849

S/U 70.00 70.00 70.00 0.00 0.00 0.000

TOTAL 155.00 155.00 155.00 85.00 327.20 3.849

-----------------------End of Student Level-----------------------

-----------------------End of Transcript-----------------------
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This document is printed on blue safety paper with UNIVERSITY 
OF CALIFORNIA SAN DIEGO printed in white type across the face 
of the document. It is of�icial if it bears the seal of the University 
and the Registrar’s signature computer printed in black. If 
photocopied, the word “VOID” will appear prominently across the 
face of the document. The use of ink eradicator or eraser will be 
evident and will eliminate the blue background.  
CREDITS: All credits are in quarter units. Cumulative summaries on 
this record may re�lect adjustments for repeated courses and/or other 
adjustments made in accordance with UC San Diego academic policies.  
TRANSFER CREDIT: Only UC San Diego courses and courses taken 
under of�icial UC San Diego exchange programs with other institutions 
appear on the transcript. Only grades earned at UC San Diego, at other 
UC campuses and under the Education Abroad Program are included in 
the grade point average. All exchange program and transfer credit is 
included in credits completed.  
GRADE INTERPRETATION: Plus (+) and minus (-) grading was 
approved for use beginning with courses taken in Fall Quarter 1983. 
The grade of A+, when awarded, represents extraordinary 
achievement, but does not receive grade point credit beyond that 
received for the grade of A.  

Grade  Grade Points Per Unit 
A+, A, A- Excellent 4.0, 4.0, 3.7 
B+, B, B- Good 3.3, 3.0, 2.7 
C+, C, C- Fair 2.3, 2.0, 1.7 
D Poor (barely passing) 1.0 
F Fail 0.0 
E* Incomplete ** 
I Incomplete ** 
IP In Progress ** 
NP Not Passing (below C-, undergraduates only) ** 
NR*** Grade not reported by Instructor ** 
P Passing (C- or better, undergraduates only) ** 
S Satisfactory (B- or better, graduates only) ** 
U Unsatisfactory (below B-, graduates only) ** 
W Withdrew after 4th week of instruction or after 

second meeting of some laboratory courses 
 

** 
Blank Grade not reported by Instructor     
* Not used after Spring Quarter 1975 
** Not included in grade point average  
*** Not used after Winter Quarter 1991  

 

School of Medicine and School of Pharmacy & 
Pharmaceutical Sciences Grades 
H/P/F grading system effective Fall, 1986. 
 

H Honors NH Near Honors 
P Pass S Satisfactory 
F Fail U Unsatisfactory 

 

DEGREE REQUIREMENTS: Undergraduate students must complete 
a minimum of 180 quarter units with a grade point average of C or better 
(2.0), satisfy the University of California requirements in American History 
and Institutions, Diversity, Equity and Inclusion course, and UC Entry Level 
Writing Requirement (formerly Subject A), satisfy the respective college 
General Education requirements, and satisfy all requirements for the 
major. Graduate students must complete their respective degree 
programs with a grade point average of B (3.0) or better. 

COURSE NUMBERS: 
 

Lower Division 
1-99 Designed for freshmen and sophomores. 

 
Upper Division 

100-199 Designed for juniors and seniors. 
 
Professional 

300-399 Designed for teachers or prospective teachers. 
 
Graduate 

200-299 Designed for graduate students. 
400-499 Rady School of Management. 
500-599 For graduate students only. 

 
School of Global Policy and Strategy 
(Formerly Graduate School of International Relations & Paci�ic Studies) 

200-295 Courses satisfying Ph.D. requirements. 
400-495 Courses satisfying MPIA requirements. 

 
School of Medicine 

200-219 Required core courses in years 1 and 2. 
220-244 Required core courses in years 1 and 2, effective Fall 2010. 
220-295 Departmental pre-clinical electives. 
296 Departmental basic science independent study. 
299 Independent Study Project. 
400-495 Core and elective clerkships in years 3 and 4. 
496 Departmental Independent Study. 

 
School of Pharmacy and Pharmaceutical Sciences 

200-299 Courses satisfying Pharm.D. requirements. 
 

UNDERGRADUATES: 
 

Honors: Effective Fall Quarter 1978, 14% of graduating seniors who 
complete at least 80 A-F graded units are eligible for College Honors.  
Normally, the top 2% are eligible for summa cum laude, the next 4% for 
magna cum laude, and the remaining 8% for cum laude. Departmental 
Honors may be awarded to graduating seniors if they complete a 
special course of study. Provost Honors are awarded quarterly to 
students who complete 12 or more A-F graded units with a term grade 
point average of 3.5 or higher. 
 

Physical Education Courses: Through Fall 1994 credit was awarded 
for all P.E. courses, but only 3 units of activity courses count toward 
graduation. 
 

Remedial Courses: Remedial courses completed at UC San Diego 
count as workload credit toward the satisfaction of the minimum 
progress requirement and eligibility for �inancial aid, they are included 
in the cumulative summaries under UC-CRDTS ATTM and UC-CRDTS 
COMPL. Remedial courses are not applied toward graduation 
requirements, and the units are excluded from the CRDTS PSSD and UC-
GPA CRDTS summaries. 
 
 
UNIVERSITY OF CALIFORNIA SAN DIEGO 
Of�ice of the Registrar, 9500 Gilman Drive 
La Jolla, California 92093-0022 
(858) 534-3144     FAX (858) 534-5723 
http://registrar.ucsd.edu 

Repeat Policy: A student may repeat only those courses for which a 
grade of D, F, NP, U, or W is recorded on the transcript. Repetition of 
courses for which a grade of C- or higher was awarded is prohibited, 
unless the course has been speci�ically approved by the Academic 
Senate as repeatable for credit. 
 

The �irst sixteen units of courses that have been repeated by an 
undergraduate student and for which the student received a D, F, NP, 
or U are not used in the cumulative grade-point calculations on the 
student’s transcript. 
 
When present, a repeat code indicates that the student’s cumulative 
summary data has been adjusted in accordance with UC San Diego 
academic policies on repeated courses. Repeat codes appear at the far 
right of the course following the grade and grade points earned.  
Example: MATH 10A Calculus 4.0 F 0.00 F1 
 
REPEAT CODE DESCRIPTIONS: 
 

D1 Repeated D - Removed from GPA 
D2 Repeat of D - Removed from Units Passed 
DA Additional Repeated D - Removed from GPA & Units Passed 
DX Repeat of D in Excess of 16 units 
F1 Repeated F - Removed from GPA 
F2 Repeat of F - Grade A - D Received 
FA Additional Repeated F - Removed from GPA 
FF Repeat of F - Grade F Received 
FX Repeat of F in excess of 16 units - Credit Given 
FY Repeat of F in excess of 16 units - No Credit Given 
N1 Repeated NP 
N2 Repeat of NP - Grade P Received 
NA Additional Repeated NP 
NN Repeat of NP - Grade NP Received 
NX Repeat of NP in Excess of 16 units - Credit Given 
NY Repeat of NP in Excess of 16 units - No Credit Given 
OF1 Repeat of D/F - Original Course Deleted - F Received 
OL1 Repeat of D/F - Original Course Deleted - A - D Received 
ON1 Repeat of NP - Original Course Deleted - NP Received 
OP1 Repeat of NP - Original Course Deleted - P Received 
RF Repeatable for Credit - F Received 
RL Repeatable for Credit - A - D Received 
RN Repeatable for Credit - NP Received 
RP Repeatable for Credit - P Received 
TC Repeat of Transfer Credit - No Credit Given 
UC UCSD D/F/NP - Repeated at Other UC Campus (Approved) 
UF Repeat of Course from Other UC - F Received 
UL Repeat of Course from Other UC - A - D Received 
UN Repeat of Course from Other UC - NP Received 
UP Repeat of Course from Other UC - P Received 
XC Repeat in Excess of Course Approval 
ZC No Credit - Repeat of C-/Better or P 
** Manually Adjusted Credit 
 1 This policy was valid for courses repeated prior to Fall 1975. 
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DEPARTMENT OF ECONOMICS
Dunning Hall
Queen’s University
Kingston, Ontario, Canada K7L 3N6
Tel 613 533-2250   FAX 613 533-6668
http://www.econ.queensu.ca

November 4, 2019

Dear Sirs,

Won-Ki Seong is currently a post-doctoral fellow at Queen’s.  He obtained his doctorate from the 
University of California, San Diego, in 2018 after just four years in their program.  He was a student of 
Brendan Beare.  Won-Ki is an extremely talented theoretical econometrician.  He already has a very 
strong portfolio of both published work and research in progress.  Up to this point, all but one of his 
papers have been concerned with the analysis of non-stationary functional time series.

I am sure that Won-Ki could have obtained a tenure-track (or equivalent) position in 2018, but he chose
instead to come to Queen’s for two years so that his wife, Dakyung Seong, could finish her dissertation 
and the two of them could go on the market at the same time.  She is indeed on the market this year, 
and I am also writing a (very positive) letter for her.

During the fifteen months or so that he has been at Queen’s, Won-Ki has been very productive.  His 
solely-authored job market paper was conceived and completed during this period.  So was his paper 
with Morten Nielsen and Dakyung Seong, which has recently been submitted to a top statistics journal. 
I believe that he also did quite a bit of work on some papers that were started earlier, notably the one 
with Beare and Toda (currently the only paper that does concern functional time series), which was 
submitted about six months ago.

Won-Ki currently has three publications, all of them joint with his supervisor Brendan Beare, plus two 
papers under submission and three that have not yet been submitted, including his job-market paper.  
This is very impressive indeed for someone who obtained his doctorate not much more than a year ago 
and only began his doctoral studies in 2014.

With one exception, all of Won-Ki’s work to date involves functional time series.  This is, quite frankly,
a field that I knew nothing about until I met him.  It involves relatively advanced mathematics, and 
everything that I know about it now has been learned from Won-Ki and, to a lesser extent, from my 
colleague Morten Nielsen, who is Won-Ki’s coauthor on one paper.  I therefore cannot provide a really 
informed assessment of Won-Ki’s papers.  However, I am certain that he has made important 
contributions, as evidenced by the fact that two of his earlier papers have already been published in the 
Journal of Time Series Analysis and in Econometric Theory.

Functional time series analysis deals with functions that evolve over time.  For example, the term 
structure of interest rates is a function of term to maturity that can, at least in principle, be observed at 
any point in time for an infinite number of maturities.  As time passes, the entire function evolves 
stochastically.  Although one could simply pick one or a few maturities and use conventional univariate
or multivariate time-series methods to model how each of them evolves over time, it is probably more 
attractive to consider the evolution of the entire term structure.  Functional time-series methods make 
this possible.

http://www.econ.queensu.ca/


Another interesting area where functional time-series methods can be used is modeling the evolution of
the climate, with (for example) temperature being being thought of as a function of location on the 
earth’s surface.  Functional time-series methods can also be used with high-frequency data where it is 
natural to divide a series into days or weeks.  The data for every day in a sample, for example, can be 
treated as a single observation on a function of the time of day.

Statisticians and econometricians have been working on models for stationary functional time series for
some years now, but Won-Ki’s work involves integrated (that is, non-stationary) functional time series. 
The literature on models for this type of data is pretty recent.  There has been a great deal of research 
on unit roots and cointegration for ordinary time series, and it turns out that similar results can in many 
cases be obtained for functional time series.  Won-Ki’s papers have made large strides in this direction. 
Most of them assume that the functions of interest live in a Hilbert space (that is, a space with an inner 
product, which can be thought of as the infinite-dimensional analog of Euclidean space), but two of the 
unpublished ones make the weaker assumption that they live in a Banach space.

I will not attempt to discuss any of Won-Ki’s papers in this letter, because they are very far from my 
own areas of interest and expertise.  I am sure that his other letter-writers will discuss many of them.  
The job-market paper appears to be a very impressive piece of work.  Based on seeing him present this 
paper and several other papers during the past year or so, I am confident that he has a deep 
understanding of the field in which he works and that he will continue to make valuable contributions 
to it over the next few years.  I expect him to be a very productive and successful researcher.  Indeed, 
he is already a very productive one.

Won-Ki could teach advanced courses in several areas of econometrics and statistics, especially time 
series.  With a bit of preparation time, I think that he could also teach a course in machine learning (last
year, he audited a course that I taught, and he got up to speed remarkably quickly).  He is, of course, 
also qualified to teach lower-level courses in many areas.  He taught a course on time-series methods in
our M.A. program last year, and he will be teaching it again this winter.

I am also confident that Won-Ki will be a good colleague.  He has been a very active participant in the 
Quantitative Workshop since he arrived at Queen’s.  This year he is organizing the Econometrics 
Working Group, which is an internal workshop series for faculty and students in the field.  During his 
time here, he has presented a large number of talks in this series.

In summary, I believe that Won-Ki has a great deal of potential as a researcher, as evidenced by his 
three published papers, the two co-authored papers that are under submission, and his three solely-
authored papers, including his very impressive job-market paper.  I am also confident that he will be a 
good teacher and a valued colleague.  I recommend him very highly.

Sincerely,

James MacKinnon

Sir Edward Peacock Professor of Econometrics
jgm@econ.queensu.ca
613 533-2293

mailto:jgm@econ.queensu.ca


Inference on Common Stochastic Trends in Functional Time Series

(Job Market Paper)

Won-Ki Seo

Department of Economics, Queen’s University

October 29, 2019

Abstract

We provide statistical procedures to identify the number of common stochastic

trends embedded in functional time series, which may be especially important in eco-

nomic applications that are often accompanied by nonstationarity. Each of those is

given by sequential applications of a proposed test based on a generalized eigenvalue

problem associated with sample covariance operators. In particular, we provide a

bottom-up procedure that determines the estimate by sequentially testing the null hy-

pothesis that there are a specified number of common stochastic trends against the

alternative that there are more. This is distinct from the existing top-down testing

procedures and has theoretical advantages especially in an infinite-dimensional setting.

Interestingly, the bottom-up procedure entails a top-down procedure as its reverse, and

those may be viewed as two different consequences of a single asymptotic phenomenon.

We also find some connections between the existing tests and ours: specifically, we

provide tests that are asymptotically or exactly equivalent to the existing tests with

slight modifications from the eigenvalue problem that our testing procedures are based

on. Our Monte Carlo experiments suggest that the finite-sample performances of the

proposed tests are satisfactory. We apply our methodology to two empirical examples:

U.S. age-specific shares of full-time employment and hourly real wage densities.
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1 Introduction

The subject of time series analysis has conventionally dealt with time series that take val-

ues in finite-dimensional Euclidean space. A recent literature on so-called functional time

series analysis deals with time series that are assumed to take values in a possibly infinite-

dimensional Hilbert or Banach space. Each observation of such a time series is, for instance,

a continuous function, a square-integrable function, or a probability density function. An

important contribution to the literature is the monograph of Bosq (2000), which provides a

rigorous treatment of stationary linear processes taking values in Hilbert and Banach spaces.

Moreover, Horváth and Kokoszka (2012) discusses statistical analysis of functional time series

and provides various empirical applications.

Developments on the functional time series analysis so far have tended to rely on the as-

sumption of stationarity. To the best of the author’s knowledge, only a few recent papers have

considered nonstationary functional time series. Given that many economic time series ex-

hibit nonstationarity, such a small size of the literature may be an indication that economists

have less paid attention to time series analysis of functional observations. A pioneering paper

by Chang et al. (2016) appears to be the first effort to fill this gap. The authors consider

density-valued cointegrated time series with finitely many (common) stochastic trends in a

Hilbert space of square-integrable functions and provide a statistical testing procedure to

determine the number of stochastic trends. In addition, Beare et al. (2017) generalizes the

notion of cointegration, introduced by Granger (1981), to an arbitrary complex Hilbert space

setting and provides a theoretical treatment of cointegrated linear processes.

As in Chang et al. (2016), this paper considers cointegrated linear processes, driven by

finitely many stochastic trends and an infinite-dimensional stationary transitory component,

in a real separable Hilbert space H (the CKP model). When this type of cointegrated linear

processes is given, it is important to identify the stochastic trends that dominate the long-run

behavior of the process, which in fact reduces to determine the number of stochastic trends

(Remark 3.15 in Section 3.4). Formal testing procedures commonly used for this purpose

in Rn are the so-called cointegration rank tests. If such a testing procedure supports that

there are r cointegrating relationships, then the number of stochastic trends is simply given

by n − r as a natural byproduct. In the CKP model, however, we do not have such a

nice correspondence: it should be noted that the cointegration ‘rank’ is always ∞ while

the cointegration ‘corank’, which indicates the number of stochastic trends, is finite. For

this reason, every testing procedure to determine the number of stochastic trend is called a

cointegration corank test in the present paper. In spite of their empirical relevance, only a

few cointegration corank tests are available in practice; as far as this author knows, those

provided in Chang et al. (2016) and Nielsen et al. (2019) are all we can use. A common

feature of the existing procedures is that they take a top-down approach: for some ϕmax that
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is pre-specified by the researcher, they sequentially test the hypotheses

H0 : cointegration corank = ϕ0 against H1 : cointegration corank < ϕ0 (1.1)

for ϕ0 = ϕmax, ϕmax − 1, . . . , 1. However, a theoretical concern may arise from this top-

down approach. Unlike the ‘top’ hypothesis is naturally constructed by setting ϕmax = n

in Rn, there is no natural starting point of the testing procedure in an infinite-dimensional

setting. We thus need prior information on an upper bound for the cointegration corank to

construct the top hypothesis. If ϕmax is smaller than the true cointegration corank by any

chance, then the testing procedure always gives an incorrect estimate. It is also worth to

mention that the existing testing procedures tend not to reject the top hypothesis if ϕmax

is less than or equal to the true cointegration corank. This implies that (i) non-rejection of

the top hypothesis does not mean that ϕmax is equal to the true value in general and (ii) a

potentially important hypothesis that ϕmax is greater than or equal to the true cointegration

corank is not statistically assessed in the existing procedures. Moreover, it is also possible

to have different estimates depending on the researcher’s conjecture on ϕmax even at a fixed

significance level with the same choice of tuning parameters (if any). These potential issues

will be discussed in Section 5 with empirical examples. For these reasons, we note the

usefulness of a new testing procedure based on the opposite selection of hypotheses given as

follows.

H0 : cointegration corank = ϕ0 against H1 : cointegration corank > ϕ0 (1.2)

for ϕ0 = 0, 1, 2, . . . successively. That is, the null hypothesis of stationarity is examined

first,1 and then the null hypothesis that there are a specified number of stochastic trends

is sequentially tested against the alternative that there are more. A clear theoretical ad-

vantage of this testing procedure over top-down procedures is that no prior information is

required: note that we always have the ‘bottom’ hypothesis regardless of dimensionality of

H. Therefore, the suggested bottom-up selection of hypotheses (1.2) appears to be more

natural in our functional setting that is commonly accompanied by an infinite-dimensional

H. Even if we leave this theoretical advantage aside, having an alternative testing procedure

would be almost always helpful in empirical applications. A new testing procedure can be

used as a complement to the existing top-down procedures in a similar way that the KPSS

test of Kwiatkowski et al. (1992) is used together with the unit root tests in examining

nonstationarity of scalar-valued time series. Moreover, it is quite clear that the estimated

cointegration corank from a bottom-up procedure may be used as a guideline for choosing

ϕmax for top-down procedures. If we restrict our discussion to the usual finite-dimensional

1In the CKP model, ϕ0 = 0 in (1.2) corresponds to testing stationarity of functional time series against
the I(1) alternative.
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Euclidean space, there are already available bottom-up procedures such as those in Harris

(1997), Snell (1999), and Nyblom and Harvey (2000), which may be useful as alternatives

to widely known top-down procedures such as those in Johansen (1995), Breitung (2002),

Shintani (2001), Boswijk et al. (2015), etc. It, however, seems that those bottom-up proce-

dures have been less paid attention from applied researchers so far. This might be partly due

to that Johansen’s VECM model and related statistical procedures, including a well known

top-down procedure to determine the number of stochastic trends, have been successfully

and popularly applied to economic time series. It is also worth to note that bottom-up

procedures are no more or less natural than top-down procedures if the top hypothesis can

be properly constructed without any theoretical concern.

This paper provides a bottom-up testing procedure based on a generalized eigenvalue

problem associated with a pair of sample covariance operators (hereafter called a variance

ratio-type eigenvalue problem). Our approach is inspired by the work of Nielsen et al.

(2019) that provides variance ratio-type tests for the number of stochastic trends in an

infinite-dimensional Hilbert space setting: the authors suitably generalize Breitung (2002)’s

nonparametric cointegration rank test developed in Rn. The proposed bottom-up test in

this paper may be viewed as a generalization of the test of Nyblom and Harvey (2000)

since it reduces to their test if H = Rn. More interestingly, our bottom-up test naturally

entails a top-down test as its reverse. To be more specific, the bottom-up test (resp. the

entailed top-down test) exploits the limiting behavior of the computed eigenvalues (resp. the

reciprocals of the computed eigenvalues) in the same variance ratio-type eigenvalue problem.

Our bottom-up test has several attractive features, which are shared by the entailed top-

down test. First, it is easy to implement in practice. The proposed variance ratio-type

eigenvalue problem is associated with sample covariance operators of functional time series

projected onto an `-dimensional subspace for some finite integer `, and the test statistic is

simply given by the sum of eigenvalues. Due to the finite dimensionality of the projected time

series, the test statistic can be easily computed by standard methods. Moreover, our analysis

shows that the asymptotic null distribution of the test statistic does not depend on any

nuisance parameters and is given by a functional of Brownian motion taking values in a finite-

dimensional subspace. Thus, quantiles of the limiting distribution, hence critical values for

the statistic, can be easily simulated. Second, our test does not depend on specific parametric

assumptions, so it is widely applicable to general cointegrated linear processes. Due to

these attractive features of our test, we expect that it would be an appealing alternative

option for applied researchers. Our Monte Carlo experiments suggest that the finite-sample

performance of the proposed test is satisfactory. In addition, the entailed top-down test

also has its own merits over the existing tests suggested by Chang et al. (2016) and Nielsen

et al. (2019). We provide a Monte Carlo evidence suggesting that the test can have better
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finite-sample properties than the existing ones depending on which DGP is employed.

We then find some theoretical connections between our tests and the existing tests. An

important feature of our bottom-up test is that it can be viewed as a generalization of the

KPSS stationarity test for functional time series (Horváth et al., 2014; Kokoszka and Young,

2016). Our test for ϕ0 = 0 and the functional KPSS test are asymptotically equivalent, and

they can be exactly equal under some specific choice of finite-dimensional projection that is

employed for dimensionality reduction of functional time series. This implies that our test for

ϕ0 = 0 generally has power against the alternative of various types of nonstationarity such

as structural breaks and/or neglected deterministic trends as the functional KPSS test does.

Moreover, the top-down test entailed with the proposed bottom-up test is closely related to

the variance ratio tests of Nielsen et al. (2019). In fact, the top-down test may be viewed

as a generalization of their tests in some aspects even if it does not fully generalize those

due to differences in approach and employed assumptions. When it comes to discussion on

cointegration corank tests in H, the test of Chang et al. (2016) (hereafter, the CKP test) is

not to be missed given that it appears to be the first testing procedure. This paper also shows

that the CKP test and its extensions can be obtained from a variance ratio-type eigenvalue

problem associated with a different pair of sample covariance operators under a suitable set

of assumptions.

We provide empirical illustrations of our methodology. Particularly, we consider a monthly

sequence of U.S. age-specific shares of full-time employment curves running from January

1980 to May 2019 and a monthly sequence of U.S. hourly real wage densities running from

January 1990 to June 2019. We apply the proposed tests to estimate the cointegration

corank and compare the results. In both applications, we found some evidence suggesting

that our bottom-up procedure can complement the top-down procedures in determining the

cointegration corank in practice.

The remainder of the present paper is organized as follows. We review some essential

mathematics in Section 2. In Section 3, we provide our test statistics and explore their

asymptotic properties, and then compare those with the existing tests. Section 4 reports

Monte Carlo results on the finite-sample performances of the proposed tests. We then apply

our methodology to two datasets in Section 5. All proofs and some additional simulation

results are given in the appendices.
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2 Mathematical preliminaries

2.1 Hilbert space and bounded linear operators

Let H denote a real separable Hilbert space with inner product 〈·, ·〉 and the induced norm

‖ · ‖ = 〈·, ·〉1/2. Given a subset U ⊂ H, we denote the orthogonal complement to U by

U⊥ = {x ∈ H : 〈x, y〉 = 0 for all y ∈ U}

and the closure of U by clU . Given two subspaces U1, U2 ⊂ H, H is said to be a direct sum

of U1 and U2, denoted by H = U1 ⊕ U2, if U1 ∩ U2 = {0} and any element of x ∈ H can be

written as x = xU1 + xU2 for some xU1 ∈ U1 and xU2 ∈ U2.

We let LH denote the space of bounded linear operators acting on H, equipped with the

operator norm ‖A‖LH = sup‖x‖≤1 ‖Ax‖. For an operator A ∈ LH, we let ranA (resp. kerA)

denote the range (resp. kernel) of A. The dimension of ranA is called the rank of A and

denoted by rankA. Given a subspace U ⊂ H, we let PU denote the orthogonal projection

onto U .

The adjoint of an operator A ∈ LH is uniquely given and denoted by A∗. If A = A∗, then

A is said to be self-adjoint. A linear operator A ∈ LH is said to be positive semidefinite if

〈Ax, x〉 ≥ 0 for any x ∈ H, and positive definite if also 〈Ax, x〉 6= 0 for any nonzero x ∈ H.

Throughout this paper, x⊗ y(·) for x, y ∈ H denotes rank one operator 〈x, ·〉y.

An operator A ∈ LH is said to be compact if there exists two orthonormal bases {uj}j∈N
and {vj}j∈N, and a real-valued sequence {γj}j∈N tending to zero, such that

Ax =
∞∑
j=1

γjuj ⊗ vj(x), (2.1)

If A is self-adjoint, then the expansion (2.1) can be simplified as follows:

Ax =
∞∑
j=1

γjuj ⊗ uj(x). (2.2)

If A is also positive semidefinite, we may assume that γ1 ≥ γ2 ≥ . . . ≥ 0 in (2.2); see (Bosq,

2000, p. 35).

Sometimes we need to restrict the domain and the codomain of a bounded linear operator.

Whenever it is required, we let A|U1→U2 denote the operator A ∈ LH whose domain (resp.

codomain) is restricted to U1 ⊂ H (resp. U2 ⊂ H).
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2.2 Generalized inverse operator

If an operator A ∈ LH has closed range, then there exists a unique operator A† ∈ LH
satisfying the so-called Moore-Penrose equations:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

A† is called the Moore-Penrose inverse of A, which also satisfies the following:

AA† = P ranA, A†A = P [kerA]⊥ .

See Engl and Nashed (1981) for more on Moore-Penrose inverses. It is well known that

compact operators (and finite rank operators as a special case) cannot be invertible in an

infinite-dimensional setting. However, the Moore-Penrose inverse is well defined for any finite

rank operator since its range is always closed. Moreover if A ∈ LH is a finite rank self-adjoint

operator, then we may obtain the explicit form of the Moore-Penrose inverse based on the

spectral representation of A: for A =
∑m

j=1 γjuj ⊗ uj, A† is given by

A† =
m∑
j=1

γ−1
j uj ⊗ uj

Moreover, for any arbitrary self-adjoint, positive semidefinite, and compact operator A ∈
LH whose spectral representation is given by A =

∑∞
j=1 γjuj⊗uj for some γ1 ≥ γ2 ≥ . . . ≥ 0,

we let A†` be given by

A†` =
∑̀
j=1

γ−1
j uj ⊗ uj

and be called an `-regularized inverse of A. Clearly, A†` may be understood as the partial

inverse of A on the restricted domain U` = span{u1, . . . , u`}.

2.3 H-valued random variables

Let (Ω,F ,P) be the underlying probability triple. Then, an H-valued random variable Z

is a measurable map from Ω to H, where H is understood to be equipped with the Borel

σ-field. An H-valued random variable Z is said to be integrable (resp. square-integrable) if

E‖Z‖ < ∞ (resp. E‖Z‖2 < ∞). If Z is integrable, there exists a unique element EZ ∈ H
such that E〈Z, x〉 = 〈EZ, x〉 for any x ∈ H. The element EZ is called the expectation of Z.

We let L2
H denote the space ofH-valued random variables Z (identifying random elements

that are almost surely equal) that satisfy EZ = 0 and E‖Z‖2 < ∞. For a random variable

Z ∈ L2
H, we may define its covariance operator as CZ = E [Z ⊗ Z], which is guaranteed to
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be self-adjoint, positive semidefinite and compact.

2.4 I(0) sequences in H

Let {εt}t∈Z be an independent and identically distributed (iid) sequence in L2
H, and let

{Aj}j≥0 ⊂ LH be a sequence satisfying
∑∞

k=0 ‖Ak‖2
LH < ∞. Then it can be shown (Bosq,

2000, Lemma 7.1) that for each t ∈ Z the series

Zt =
∞∑
k=0

Akεt−k

is convergent in L2
H. Such a sequence {Zt}t∈Z is called a linear process in H. More generally,

given any t0 ∈ Z ∪ {−∞}, we call the sequence {Zt}t≥t0 a linear process in H. Linear

processes with square summable coefficients are necessarily stationary.

If {Aj}j≥0 ⊂ LH satisfies
∑∞

j=0 ‖Aj‖LH < ∞, then {Zt}t≥t0 is called a standard linear

process in H. In this case the series A(1) :=
∑∞

j=0Aj is convergent in LH, and it can be

easily shown that the long-run covariance operator ΛZ ∈ LH is given by

ΛZ = E(Zt ⊗ Zt) +
∞∑
s=1

(E(Zt ⊗ Zt−s) + E(Zt−s ⊗ Zt)) = A(1)Cε0A(1)∗ (2.3)

Note that ΛZ is also self-adjoint, positive semidefinite, and compact. If {Zt}t≥t0 is standard

linear and its long-run covariance is nonzero, then it is called an I(0) sequence (Beare et al.,

2017, Section 3.4).

In this paper, more generally, {Zt}t≥t0 is said to be I(0) if {Zt − µZ}t≥t0 is standard

linear for some µZ ∈ H and its long-run covariance, simply obtained by replacing Zt−s with

Zt−s − µZ for all s ≥ 0 in (2.3), is nonzero.

2.5 Cointegration in H

We briefly introduce cointegratedH-valued I(1) processes and their mathematical properties.

Our primary reference is Beare et al. (2017). A sequence {Xt}t≥0 is I(1) if its first differences

∆Xt := Xt −Xt−1 satisfy

∆Xt =
∞∑
j=0

Φjεt−j, t ≥ 1, (2.4)

{εt}t∈Z is an iid sequence in L2
H, with positive definite Cε0 , (2.5)

{Φj}j≥0 satisfies
∞∑
j=0

j‖Φj‖LH <∞ and Φ(1) :=
∞∑
j=0

Φj is convergent. (2.6)
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Then from (2.3), we may deduce that the long-run covariance operator of {∆Xt}t≥1 is given

by Λ∆X = Φ(1)ΣΦ(1)∗.

For a sequence satisfying (2.4)-(2.6), it can be shown (Beare et al., 2017, equations (3.4)

and (3.5)) that the so-called Beveridge-Nelson decomposition is obtained as follows.

∆Xt = Φ(1)εt + νt − νt−1, t ≥ 1, (2.7)

where νt =
∑∞

j=0 Φ̃jεt−j and Φ̃j = −
∑∞

k=j+1 Φk. Solutions to the difference equation (2.7)

are given by

Xt = µ+ Φ(1)
t∑

s=1

εs + νt, t ≥ 1, (2.8)

for some time invariant component µ ∈ H.

The cointegrating space (stationary subspace) of {Xt}t≥0 is the collection of elements

x ∈ H such that the scalar-valued sequence {〈Xt, x〉}t≥0 is stationary for a suitable choice of

the initial condition X0. Moreover, the attractor space (nonstationary subspace) of {Xt}t≥0

is defined by the orthogonal complement of the cointegrating space. For any I(1) sequence

satisfying (2.4)-(2.6), it may be easily deduced from Proposition 3.3 of Beare et al. (2017) that

the cointegrating space is given by [ran Φ(1)]⊥ and the attractor space is given by cl ran Φ(1).

Those are closed subspaces of H, and we hereafter let A (resp. C) denote the attractor space

(resp. the cointegrating space). Clearly, we have the direct sum decomposition H = A⊕ C.

3 Testing Procedures

3.1 Model and Hypotheses of Interest

We consider a cointegrated sequence satisfying the following conditions.

Assumption M.

(i) The sequence {Xt}t≥1 satisfies (2.4)-(2.8), and E‖εt‖4 <∞.

(ii) dim(A) is given by some integer ϕ in [0,∞).

(iii) {νt}t≥1 is an I(0) sequence.

(iv) The coefficients {Φ̃j}j≥0 of νt satisfies
∑∞

j=1 j‖Φ̃j‖LH <∞.

Under Assumption M(i) and (ii), the attractor space A is finite-dimensional which is similar

to the setting considered in Chang et al. (2016) and Nielsen et al. (2019). A sufficient

condition for A to be a finite-dimensional subspace is given in Seo (2017), Beare and Seo
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(2019), and Franchi and Paruolo (2019) when {Xt}t≥1 is an autoregressive process. Since any

finite-dimensional subspace is closed, we have the direct sum decomposition H = ran Φ(1)⊕
[ran Φ(1)]⊥, where ran Φ(1) = A and [ran Φ(1)]⊥ = C. If dim(A) = ϕ = 0, then our time

series {Xt}t≥1 becomes I(0) due to (iii). (iv) is employed for our asymptotic analysis for

convenience, and it is not restrictive in practice.

Given the direct sum H = A ⊕ C, we may decompose {Xt}t≥1 into a unit root process

{PAXt}t≥1 taking values in A and an I(0) sequence {P CXt}t≥1 taking values in C. Then the

long-run covariance of the I(0) component {P Cνt}t≥1 is given by

P CΛνP
C = E(ν̃t ⊗ ν̃t) +

∞∑
s=1

(E(ν̃t ⊗ ν̃t−s) + E(ν̃t−s ⊗ ν̃t))

ν̃t = P CXt − E
(
P CXt

)
Let {uj}j∈N be any arbitrary orthonormal basis of H satisfying span{u1, . . . , uϕ} = A. We

may understand an H-valued random variable Xt as the following basis expansion

Xt =
∞∑
j=1

〈Xt, uj〉uj,
∞∑
j=1

〈Xt, uj〉2 <∞, almost surely.

Due to a well known isomorphism between a Hilbert space and the space of square-

summable sequences, `2(N), {Xt}t≥1 may be viewed as the following random square-summable

sequences (
〈Xt, uj〉, · · · 〈Xt, uϕ〉, 〈Xt, uϕ+1〉, · · ·

)
, t ≥ 1

Clearly the first ϕ components are scalar-valued I(1) processes since

∆〈Xt, uj〉 = 〈Φ(1)εt, uj〉+ 〈νt − νt−1, uj〉 , j = 1, . . . , ϕ

is stationary, and its long-run covariance, given by 〈Λ∆Xuj, uj〉, is nonzero under our as-

sumptions. On the other hand, the remaining components are stationary since

〈Xt, uj〉 = 〈µ, uj〉+ 〈νt, uj〉 , j = ϕ+ 1, . . . (3.1)

and {〈νt, uj〉}t≥1 is a measurable transformation of a stationary sequence {νt}t≥1. It should

be noted that {〈Xt, u〉}t≥1 for u ∈ C may not be I(0) since its long-run covariance, given by

〈P CΛνP
Cu, u〉, can be zero if kerP CΛνP

C 6= {0}. That is, (3.1) may not be I(0) in R even if

{νt}t≥1 is I(0) in H.

From the above discussion, it is deduced that the dimension of A, denoted by ϕ, is

interpreted as the number of common stochastic trends, generalizing the same notion from

the literature on cointegration rank tests in Euclidean space. Note that it may not be proper
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to call any statistical testing procedure to estimate ϕ as a cointegration rank test since the

cointegration rank is not defined in our model if dim(H) = ∞ as usually assumed. On

the other hand, it is quite proper to call it a cointegration corank test since what we are

interested in is the corank of P C that is necessarily equal to ϕ.

In the following subsections, we provide statistical testing procedures to estimate the

cointegration corank. As in Chang et al. (2016) and Nielsen et al. (2019), we may first

consider the following top-down selection of hypotheses:

H0 : ϕ = ϕ0 against H1 : ϕ < ϕ0, (3.2)

for ϕ0 = ϕmax, . . . , 1 successively for some pre-specified value of ϕmax. If H is finite-

dimensional, then ϕmax = dim(H) is an obvious starting point of the above procedure.

However, no such natural choice exists if H is infinite-dimensional and we do not have prior

information on an upper bound of ϕ. There are a few practical ways to choose ϕmax, sug-

gested by Chang et al. (2016), but they tend to depend on the researcher’s subjectivity. On

the other hand, consider the following selection of the hypotheses:

H0 : ϕ = ϕ0 against H1 : ϕ > ϕ0, (3.3)

for ϕ0 = 0, 1, 2, . . . successively. That is, we initially test stationarity of time series, and then

sequentially test whether there are more stochastic trends. The estimate is determined by the

first non-rejected null hypothesis. Especially in our model that typically considers an infinite-

dimensional H, this bottom-up approach has theoretical advantages over the aforementioned

top-down procedures; it is stand-alone without the help of any prior information on an upper

bound of ϕ.

3.2 Test Statistics and Asymptotic Analysis

3.2.1 Notations

In this section, we provide our bottom-up and top-down test statistics and establish their

asymptotic properties. We first fix notation for the subsequent discussion. Throughout the

present paper, let
∫

mean
∫ 1

0
for notational simplicity. We let {W (r)}r∈[0,1] denote the

standard Hilbertian Brownian motion (see e.g. Chen and White (1998) for more detailed

discussion), and define the following: for r ∈ [0, 1],

B(r) = W (r)− rW (1), W (r) = W (r)−
∫
W (τ)dτ, V (r) =

∫ r

0

W (τ)dτ. (3.4)

Moreover, we let {Wη(r)}r∈[0,1] denote the standard Brownian motion taking values in Rη

for η ∈ N, and define Bη(r), W η(r), and Vη(r) as in (3.4). For continuous Hilbert-valued
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functions A(r) and B(r) defined for r ∈ [0, 1], we let SA,B denote the operator

SA,B =

∫
B(r)⊗ A(r)dr.

For a possibly random bounded linear operator A, we let {λj(A)}j∈N denote the eigenvalues

in descending order of A if they exist.

Given functional observations {Xt}Tt=1, let Yt =
∑t

s=1(Xs− X̄T ) with X̄T = T−1
∑T

t=1 Xt

for t = 1, . . . , T and CT (s) be the sample autocovariance operator at lag s, defined by

CT (s) = T−1

T∑
t=s+1

(Xt − X̄T )⊗ (Xt−s − X̄T ) (3.5)

We also define

ΛT = CT (0) +
T−1∑
s=1

k
( s
h

)
(CT (s) + CT (s)∗) (3.6)

KT = T−2

T∑
t=1

Yt ⊗ Yt (3.7)

where k(·) (resp. h) is the kernel (resp. the bandwidth) satisfying the requirements given in

Assumption K below:

Assumption K.

(i) k(0) = 1, k(u) = 0 if u > c with some c > 0, k is continuous on [0, c].

(ii) h→∞ and h/T → 0 as T →∞.

Many kernel functions used in practice satisfy Assumption K(i). For k(·) and h satisfying

Assumption K, we define

m = ch, ck = 2

∫ c

0

k(τ)dτ.

3.2.2 Test Statistics

We consider the test of (3.2) or (3.3) for various values of ϕ0, and let `(ϕ0) denote a positive

integer that is defined for each ϕ0. For now, we do not restrict `(ϕ0), but for reasons to

become apparent we will require `(ϕ0) > ϕ0 for the proposed bottom-up test and `(ϕ0) ≥ ϕ0

or `(ϕ0) = ϕ0 for the top-down tests considered in this paper. Our tests are based on the
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following variance ratio-type eigenvalue problem:

Π`
T (ϕ0)KTΠ`

T (ϕ0)φj,T = λj,TΠ`
T (ϕ0)ΛTΠ`

T (ϕ0)φj,T , φj,T ∈ ran Π`
T (ϕ0), (3.8)

λ1,T ≥ λ2,T ≥ · · · ≥ λ`(ϕ0),T ,

where {Π`
T (ϕ0)}T∈N is a sequence of orthogonal projections onto an `(ϕ0)-dimensional sub-

space H`
T (ϕ0)(= ran Π`

T (ϕ0)). Given T , (3.8) may be viewed as a generalized eigenvalue

problem defined on a finite-dimensional subspace H`
T (ϕ0), so we may easily obtain the eigen-

values and the corresponding eigenvectors using standard methods. We first employ the

following high-level conditions.

Assumption P. For `(ϕ0) > 0, {Π`
T (ϕ0)}T∈N is a sequence satisfies the following:

(a) For some orthogonal projection Π`(ϕ0) onto `(ϕ0)-dimensional subspace H`(ϕ0),∥∥Π`
T (ϕ0)− Π`(ϕ0)

∥∥
LH
→p 0 as T →∞.

(b) H`(ϕ0) satisfies

dim(H`(ϕ0) ∩ A) = min{ϕ, `(ϕ0)},
rank(Π`(ϕ0)P CΛνP

CΠ`(ϕ0)) = `(ϕ0)−min{ϕ, `(ϕ0)}.

We will discuss on data-dependent choices of Π`
T (ϕ0) satisfying Assumption P in Section

3.4. When {Π`
T (ϕ0)}T∈N satisfies Assumption P, we let ΠA(ϕ0) (resp. ΠC(ϕ0)) denote the

orthogonal projection onto H`(ϕ0)∩A (resp. H`(ϕ0)∩C), whose rank is min{ϕ, `(ϕ0)} (resp.

`(ϕ0)−min{ϕ, `(ϕ0)}). The proposed testing procedures are based on the following limiting

behavior of the eigenvalues.

Proposition 3.1. Let Assumptions M, K and P hold. Then the eigenvalues (λ1,T , . . . , λ`(ϕ0),T )

in (3.8) satisfy the following.

(i) For j = 1, . . . ,min{ϕ, `(ϕ0)}

(T/m)λ−1
j,T →d ck · λj

(
S̃V,V (ϕ0)†S̃W,W (ϕ0)

)
, jointly.

(ii) For j = min{ϕ, `(ϕ0)}+ 1, . . . , `(ϕ0),

λj,T →d λj−min{ϕ,`(ϕ0)}

(
S̃B,B(ϕ0)− S̃B,V (ϕ0)S̃V,V (ϕ0)†S̃V,B(ϕ0)

)
, jointly.
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In the above expressions,

S̃B,B(ϕ0) = ΠC(ϕ0)SB,BΠC(ϕ0), S̃V,V (ϕ0) = ΠA(ϕ0)SV,V ΠA(ϕ0), S̃W,W (ϕ0) = ΠA(ϕ0)SW,WΠA(ϕ0)

S̃B,V (ϕ0) = ΠC(ϕ0)SB,V ΠA(ϕ0), S̃V,B(ϕ0) = ΠA(ϕ0)SV,BΠC(ϕ0),

The limit in Proposition 3.1(ii) is given by an eigenvalue of a specific random self-adjoint

operator whose rank is almost surely given by

κ(ϕ0) = `(ϕ0)− ϕ0,

which is hereafter called the slackness of Π`
T (ϕ0). If `(ϕ0) ≤ ϕ, then Proposition 3.1 implies

that every eigenvalue satisfying (3.8) diverges to infinity as T →∞. On the other hand, we

have convergent eigenvalues if `(ϕ0) > ϕ. Then it is deduced that the statistic

B(ϕ0, κ(ϕ0)) =

`(ϕ0)∑
j=ϕ0+1

λj,T , `(ϕ0) > ϕ0, ϕ0 = 0, 1, 2, . . . (3.9)

has a well defined limiting distribution if ϕ0 ≥ ϕ, and it diverges to infinity if ϕ0 < ϕ. It

should be noted that the statistic and its limit depend on the choice of Π`
T (ϕ0) for each ϕ0.

Particularly, κ(ϕ0) affects the limiting distribution, which can be deduced from the fact that

the test statistic is given by the sum of the smallest κ(ϕ0) eigenvalues that are nondegenerate

in the limit. This dependence is a new aspect arising from dimensionality reduction in an

infinite-dimensional Hilbert space and generally absent in a finite-dimensional setting. The

argument κ(ϕ0) of B(ϕ0, κ(ϕ0)) is introduced to highlight such dependence.

A consistent testing procedure is proposed as follows.

Corollary 3.1. Suppose that Assumptions M, K and P hold. Then B(ϕ0, κ(ϕ0)), which is

sequentially defined for ϕ0 = 0, 1, 2, . . . in (3.9), satisfies the following.

(i) If ϕ0 = ϕ, B(ϕ0, κ(ϕ0))→d tr(S̃B,B(ϕ0)− S̃B,V (ϕ0)S̃V,V (ϕ0)†S̃V,B(ϕ0)).

(ii) If ϕ0 < ϕ, B(ϕ0, κ(ϕ0))→p ∞.

Let ϕ̂B(α) denote the value ϕ0 such that B(ϕ0, κ(ϕ0)) ≤ CB(α;ϕ0, κ(ϕ0)) for the first time,

where CB(α;ϕ0, κ(ϕ0)) is the (1− α)-quantile of the limiting distribution in (i). Then

(iii) P{ϕ̂B(α) = ϕ} → 1− α and P{ϕ̂B(α) < ϕ} → 0.

In the above testing procedure, there is no restriction other than `(ϕ0) > ϕ0, so the

slackness κ(ϕ0) can be any positive integer for each ϕ0. Depending on the researcher’s

choice of κ(ϕ0), test statistic B(ϕ0, κ(ϕ0)) and its limiting distribution are different. We

thus need critical values CB(α;ϕ0, κ(ϕ0)) depending on both ϕ0 and κ(ϕ0) in addition to α.
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This can be easily done by a large number of simulations for any specific choice of κ(ϕ0);

see Remark 3.4. Instead of reporting all possible choices of κ(ϕ0) for each ϕ0, which is of

course impossible, we may conveniently assume `(ϕ0) = ϕ0 + % for some constant % so that

κ(ϕ0) = % regardless of ϕ0. In addition, % does not need to be a big number since our

asymptotic theory only requires % > 0, so we may conveniently choose small % in practice.

Table 1(a)-(c) report critical values for α = 0.1, 0.05 and 0.01 when % = 1, 2 and 3.

Remark 3.1. It is not difficult to show that the test based on B(ϕ0, κ(ϕ0)) reduces to the

test of Nyblom and Harvey (2000) if H = Rn and Π`
T (ϕ0) is the identity map on Rn. It

further reduces to the test of Kwiatkowski et al. (1992) if ϕ0 = 0 and n = 1 additionally

hold.

Remark 3.2. (Choice of h for B(ϕ0, κ(ϕ0)) in practice) In finite samples, our choice of h (or

equivalently, m) for B(ϕ0, κ(ϕ0)) needs to depend on persistence of the stationary component

{νt}t≥1 to have a better finite-sample performance. If we choose too small h when {νt}t≥1

exhibits strong persistence, then P CΛTP
C may be a poor estimate of P CΛνP

C, which makes

our test over-sized in general. To avoid this problem we may choose a bigger bandwidth, but

it brings about a loss of power: when H1 is true, we may deduce from Proposition 3.1 that

B(ϕ0, κ(ϕ0)) is divergent and Op(T/m), so the rate of divergence is smaller when m/T is

bigger. A Monte Carlo evidence of this trade-off between correct size and power is provided

in Section 4. A similar discussion in a Euclidean space setting can be found in Section 6 of

Kwiatkowski et al. (1992) or Section 2.3 of Nyblom and Harvey (2000).

Note that Proposition 3.1 also describes the limiting behavior of the inverse eigenvalues,

from which we can also derive a top-down testing procedure that may be viewed as the

reverse of our bottom-up procedure. Consider a sequence of statistics

T (ϕ0, κ(ϕ0)) =
T

m

ϕ0∑
j=1

λ−1
j,T , `(ϕ0) ≥ ϕ0, ϕ0 = ϕmax, ϕmax − 1, . . . , 1, (3.10)

where ϕmax is a pre-specified integer satisfying ϕmax ≥ ϕ. From Proposition 3.1, we may

deduce that T (ϕ0, κ(ϕ0)) has a well defined limiting distribution if ϕ0 ≤ ϕ, but diverges to

infinity if ϕ0 > ϕ. This limiting behavior is the opposite to that of B(ϕ0, κ(ϕ0)): except for

the case when both are convergent, i.e. ϕ0 = ϕ, B(ϕ0, κ(ϕ0)) (resp. T (ϕ0, κ(ϕ0))) diverges

when T (ϕ0, κ(ϕ0)) (resp. B(ϕ0, κ(ϕ0))) converges. It should be noted that the slackness κ(ϕ0)

does not have any role in the limit as long as `(ϕ0) ≥ ϕ0 because the limiting distribution in

Proposition 3.1(i) is given by an eigenvalue of a random self-adjoint operator whose rank is

ϕ0 regardless of κ(ϕ0). Moreover, it is worth mentioning that `(ϕ0) = ϕ0 is allowed, which is

not as in (3.9). A consistent testing procedure based on a sequence of T (ϕ0, κ(ϕ0)) is given

as follows.
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Table 1: Critical values when κ(ϕ0) = %

(a) Mean-adjusted, % = 1

ϕ0 = 0 1 2 3 4 5 6 7 8
10% 0.3456 0.1625 0.0933 0.0626 0.0467 0.0367 0.0302 0.0254 0.0219
5% 0.4609 0.2201 0.1201 0.0777 0.0567 0.0439 0.0354 0.0295 0.0252
1% 0.7444 0.4014 0.2027 0.1213 0.0830 0.0624 0.0491 0.0394 0.0332

(b) Mean-adjusted, % = 2

ϕ0 = 0 1 2 3 4 5 6 7 8
10% 0.6068 0.2970 0.1687 0.1140 0.0845 0.0667 0.0548 0.0465 0.0403
5% 0.7471 0.3797 0.2068 0.1352 0.0982 0.0762 0.0618 0.0519 0.0446
1% 1.0782 0.6261 0.3182 0.1931 0.1332 0.0998 0.0789 0.0647 0.0549

(c) Mean-adjusted, % = 3

ϕ0 = 0 1 2 3 4 5 6 7 8
10% 0.8397 0.4246 0.2405 0.1620 0.1208 0.0954 0.0786 0.0667 0.0578
5% 0.9974 0.5328 0.2888 0.1881 0.1372 0.1069 0.0870 0.0733 0.0630
1% 1.3533 0.8232 0.4327 0.2586 0.1795 0.1351 0.1072 0.0883 0.0752

(d) Trend-adjusted, % = 1

ϕ0 = 0 1 2 3 4 5 6 7 8
10% 0.1190 0.0848 0.0610 0.0460 0.0365 0.0301 0.0254 0.0220 0.0193
5% 0.1479 0.1055 0.0751 0.0557 0.0435 0.0353 0.0295 0.0252 0.0220
1% 0.2166 0.1590 0.1133 0.0821 0.0618 0.0485 0.0395 0.0332 0.0285

(e) Trend-adjusted, % = 2

ϕ0 = 0 1 2 3 4 5 6 7 8
10% 0.2110 0.1514 0.1104 0.0837 0.0664 0.0547 0.0464 0.0402 0.0354
5% 0.2469 0.1789 0.1295 0.0969 0.0755 0.0616 0.0518 0.0445 0.0390
1% 0.3295 0.2450 0.1781 0.1295 0.0990 0.0785 0.0647 0.0546 0.0472

(f) Trend-adjusted, % = 3

ϕ0 = 0 1 2 3 4 5 6 7 8
10% 0.2954 0.2141 0.1570 0.1193 0.0948 0.0784 0.0666 0.0578 0.0509
5% 0.3363 0.2464 0.1801 0.1350 0.1062 0.0866 0.0729 0.0630 0.0552
1% 0.4267 0.3239 0.2380 0.1755 0.1342 0.1069 0.0883 0.0749 0.0648

Notes: Based on 200,000 Monte Carlo replications.

Corollary 3.2. Suppose that Assumptions M, K and P hold, and ϕmax ≥ ϕ is satisfied.

Then T (ϕ0, κ(ϕ0)), which is sequentially defined for ϕ0 = ϕmax, . . . , 1 in (3.10), satisfies the

following.

(i) If ϕ0 = ϕ, c−1
k T (ϕ0, κ(ϕ0))→d · tr(S̃V,V (ϕ0)†S̃W,W (ϕ0)).
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(ii) If ϕ0 > ϕ, c−1
k T (ϕ0, κ(ϕ0))→p ∞.

Let ϕ̂T (α) = ϕ∗(α)−1 and ϕ∗(α) denote the smallest value of ϕ0 such that c−1
k T (ϕ0, κ(ϕ0)) >

CT (α;ϕ0), where CT (α;ϕ0) is the (1− α)-quantile of the limiting distribution in (i). Then

(iii) P{ϕ̂T (α) = ϕ} → 1− α and P{ϕ̂T (α) > ϕ} → 0.

This top-down procedure has a convenient property compared to the bottom-up proce-

dure: for a given significance level α, critical values CT (α;ϕ0) can be simply provided as

a function of ϕ0, which is because that the limiting distribution does not depend on our

choice of κ(ϕ0) but does only on ϕ0. However, κ(ϕ0) set to zero or a big number is not

recommended in practice; see Remark 3.13.

Remark 3.3. It is worth noting that Corollary 3.2 requires ϕmax ≥ ϕ. Proposition 3.1

says that the top-down test statistic T (ϕ0, κ(ϕ0)) has a well defined limiting distribution for

ϕ0 ≤ ϕmax < ϕ, which implies that for each of ϕ0 the incorrect null hypothesis H0 : ϕ = ϕ0

tends not to be rejected with probability (1 − α) when T is large enough. This clearly

leads to an incorrect determination of the cointegration corank because the misspecified

top hypothesis is not likely to be rejected and we tend to conclude that ϕ̂T = ϕmax as a

consequence. This is a common drawback shared by all the top-down tests considered in the

present paper.

Remark 3.4. Note that ran ΠC(ϕ0) (resp. ran ΠA(ϕ0)) is isomorphic to κ(ϕ0)-dimensional

(resp. ϕ0-dimensional) Euclidean space. Then one can show that the asymptotic null distri-

bution tr(S̃B,B(ϕ0)− S̃B,V (ϕ0)S̃V,V (ϕ0)†S̃V,B(ϕ0)) is equal in distribution to

tr

(∫
Bκ(ϕ0)(r)B

′
κ(ϕ0)(r)dr −

∫
Bκ(ϕ0)(r)V

′
ϕ0

(r)

(∫
Vϕ0(r)V ′ϕ0

(r)dr

)−1 ∫
Vϕ0(r)B′κ(ϕ0)(r)dr

)
,

(3.11)

and tr(S̃V,V (ϕ0)†S̃W,W (ϕ0)) is equal in distribution to

tr

((∫
Vϕ0(r)V ′ϕ0

(r)dr

)−1 ∫
Wϕ0(r)W

′
ϕ0

(r)dr

)
, (3.12)

It should be noted that (3.11) depends on ϕ0 and κ(ϕ0), but (3.12) depends only on ϕ0.

From a large number of approximate realizations of (3.11) for each pair of ϕ0 and κ(ϕ0), we

may obtain critical values for B(ϕ0, κ(ϕ0)). Moreover, critical values for c−1
k T (ϕ0, κ(ϕ0)) can

be similarly obtained from a large number of approximate realizations of (3.12) for each ϕ0,

which are available from Table 6 of Breitung (2002).

Remark 3.5. (Choice of bandwidth h for T (ϕ0, κ(ϕ0)) in practice) When H1 is true,

c−1
k T (ϕ0, κ(ϕ0)) diverges to infinity and its stochastic order is Op(T/m). Therefore, a bigger
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bandwidth again entails a loss of power. With a slight modification of our proof of Proposi-

tion 3.1, we may obtain an asymptotically equivalent test statistic T0(ϕ0, κ(ϕ0)) by replacing

ΛT with CT (0) (that is, ΛT with h = 0) in (3.8), and it diverges to infinity with order Op(T ).2

Our simulation results show that the test based on T0(ϕ0, κ(ϕ0)) does have a reasonable size

control overall. Therefore, we expect that choosing moderate h may be preferred to avoid a

substantial loss of power.

3.2.3 Inclusion of a linear trend

We assumed that {Xt}t≥1 has a nonzero time invariant component µ since this may be the

most common case in practice. However, our discussion can be easily extended to the model

with a linear trend. Consider the following unobserved component model.

Zt = ζt+Xt, ζ ∈ H, (3.13)

In this case, we define the functional residuals from least square estimation as follows.

Ut = Xt − X̄T −
(
t− T + 1

2

)∑T
t=1

(
t− T+1

2

)
Xt∑T

t=1

(
t− T+1

2

)2 ; (3.14)

see Kokoszka and Young (2016) for details. We then define trend-adjusted sample covariance

operators C̃T (s), Λ̃T and K̃T by replacing (Xt − X̄T ) with Ut in (3.5)-(3.7). The generalized

eigenvalue problem (3.8) is also changed to

Π`
T (ϕ0)K̃TΠ`

T (ϕ0)φj,T = λj,TΠ`
T (ϕ0)Λ̃TΠ`

T (ϕ0)φj,T , φj,T ∈ ran Π`
T (ϕ0) (3.15)

λ1,T ≥ λ2,T ≥ · · · ≥ λ`(ϕ0),T ,

We then obtain the following asymptotic properties of the eigenvalues.

Proposition 3.2. Let Assumptions M, K and P hold. Then the eigenvalues (λ1,T , . . . , λ`(ϕ0),T )

in (3.15) satisfy the following.

(i) For j = 1, . . . ,min{ϕ, `(ϕ0)}

(T/m)λ−1
j,T →d ck λj

(
S̃V2,V2(ϕ0)†S̃W2,W2(ϕ0)

)
, jointly.

(ii) For j = min{ϕ, `(ϕ0)}+ 1, . . . , `(ϕ0),

λj,T →d λj−min{ϕ,`(ϕ0)}

(
S̃B2,B2(ϕ0)− S̃B2,V2(ϕ0)S̃V2,V2(ϕ0)†S̃V2,B2(ϕ0)

)
, jointly.

2For reasons to become apparent, a detailed discussion on the test statistic is postponed to Section 3.3.2.
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In the above expressions, (W2(r), r ∈ [0, 1]) (resp. (B2(r), r ∈ [0, 1])) denotes the detrended

Brownian motion (resp. the second-level Brownian bridge) in H,3 V2(r) =
∫ r

0
W2(τ)dτ , and

S̃B2,B2(ϕ0)=ΠC(ϕ0)SB2,B2Π
C(ϕ0), S̃V2,V2(ϕ0)=ΠA(ϕ0)SV2,V2ΠA(ϕ0), S̃W2,W2(ϕ0)=ΠA(ϕ0)SW2,W2Π

A(ϕ0)

S̃B2,V2(ϕ0)=ΠC(ϕ0)SB2,V2Π
A(ϕ0), S̃V2,B2(ϕ0)=ΠA(ϕ0)SV2,B2Π

C(ϕ0),

From the limiting behavior of the eigenvalues given in Proposition 3.2, we may easily

obtain the corresponding bottom-up and top-down testing procedures as in Corollary 3.1

and 3.2. Critical values for each statistic can be simulated as in Remark 3.4; see our Table

1(c)-(e) for the bottom-up test with κ(ϕ0) = ϕ0 + % for % = 1, 2, 3, and Table 6 of Breitung

(2002) for the top-down test, respectively.

3.3 Comparisons with existing tests

3.3.1 Functional KPSS tests

Let us focus on the following null and alternative hypotheses:

H0 : dim(A) = 0 against H1 : dim(A) ≥ 1. (3.16)

Under the null hypothesis, {Xt}t≥1 is simply a linear process with mean µ. Needless to

say, our bottom-up test is then understood to be a test of level stationarity of functional

time series belonging to a certain class of stochastic processes. In the context of functional

time series, there are a few papers that consider tests of the null hypothesis of stationarity

such as Horváth et al. (2014), Kokoszka and Young (2016) and Aue and Van Delft (2017).

Particularly, the first (resp. the second) paper provides a suitable generalization of the KPSS

test of level stationarity (resp. trend stationarity). In each specification of deterministic

terms, it can be easily verified that the limiting distribution of our bottom-up test statistic

for some choice of `(0) (or equivalently κ(0)) is equal to that of the generalized KPSS test

statistic. Moreover, as shown in Remark 3.6 below, they are even numerically identical

under some specific choice of Π`
T (0). Since our test can be applied to examine more general

hypotheses (3.3) than (3.16), it may be viewed as a generalization of their tests. Moreover,

it is a natural consequence drawn from the works of Horváth et al. (2014) and Kokoszka

and Young (2016) that our test of the null hypothesis in (3.16) would have a good power

against the alternative of various types of nonstationarity such as structural breaks and/or

unrecognized deterministic trends.

3Specifically, W2(r) = W (r) + (6r − 4)
∫
W (τ)dτ + (6 − 12r)

∫
τW (τ)dτ and B2(r) = W (r) + (2r −

3r2)W (1) + (−6r + 6r2)
∫
W (τ)dτ .
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Remark 3.6. We only consider the case when {Xt}Tt=1 is level stationary. Based on the

results in Section 3.2.3, the subsequent arguments may be easily adapted to the case when

a linear trend exists. Let (τj,T , uj,T ) is a pair of eigenvalue and eigenvector of ΛT and

τ1,T ≥ τ2,T ≥ . . .. Horváth et al. (2014)’s test statistic can be written as

`(0)∑
j=1

τ−1
j,T 〈KTuj,T , uj,T 〉, `(0) > 0,

If we let Π`
T (0) =

∑`(0)
j=1 uj,T ⊗ uj,T , then it satisfies all the requirements of Assumption P,

which is supported by Proposition 3.5 that will appears later. For this choice of Π`
T (0), we

can show that B(0, κ(0)) is numerically identical to their statistic. To see this, note that

〈KTuj,T , uj,T 〉 = 〈Π`
T (0)KTΠ`

T (0)uj,T , uj,T 〉 and τj,Tuj,T = Π`
T (0)ΛTΠ`

T (0)uj,T . Then,

`(0)∑
j=1

τ−1
j,T 〈KTuj,T , uj,T 〉 =

`(0)∑
j=1

〈Π`
T (0)KTΠ`

T (0)
(
Π`
T (0)ΛTΠ`

T (0)
)†
`(0)

uj,T , uj,T 〉

= tr
(

Π`
T (0)KTΠ`

T (0)
(
Π`
T (0)ΛTΠ`

T (0)
)†
`(0)

)
= tr

((
Π`
T (0)ΛTΠ`

T (0)
)†
`(0)

Π`
T (0)KTΠ`

T (0)
)

=

`(0)∑
j=1

λj,T ,

which is clearly equivalent to our statistic. Choice of `(0) is not carefully discussed in the

present paper. One reasonable approach in practice may be to select `(0) so that roughly

a% of the sample covariance is explained by the first `(0) principal components for fixed a;

see Section 4 of Horváth et al. (2014) for more details.

3.3.2 Variance ratio tests of Nielsen et al. (2019).

Consider the following variance ratio-type eigenvalue problem:

Π`
T (ϕ0)KTΠ`

T (ϕ0)φj,T = λj,TΠ`
T (ϕ0)CT (0)Π`

T (ϕ0)φj,T , φj,T ∈ ran Π`
T (ϕ0) (3.17)

λ1,T ≥ λ2,T ≥ · · · ≥ λ`(ϕ0),T

Clearly, (3.17) is a special case of (3.8), obtained by employing h = 0 for ΛT . With only

a slight modification of the proof of Proposition 3.1, the following asymptotic properties of

the eigenvalues may be deduced.

Proposition 3.3. Let Assumptions M, K and P hold. Then the eigenvalues (λ1,T , . . . , λ`(ϕ0),T )

in (3.8) satisfy the following.
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(i) For j = 1, . . . ,min{ϕ, `(ϕ0)}

T λ−1
j,T →d λj

(
S̃V,V (ϕ0)†S̃W,W (ϕ0)

)
, jointly.

(ii) For j = min{ϕ, `(ϕ0)}+ 1, . . . , `(ϕ0),

λj,T →d λj−min{ϕ,`(ϕ0)}

(
S̃
)
, jointly.

for some finite rank self-adjoint operator S̃. If E[νt−s⊗νt] = E[νt⊗νt−s] = 0 for s 6= 0,

then S̃ = S̃B,B(ϕ0)− S̃B,V (ϕ0)S̃V,V (ϕ0)†S̃V,B(ϕ0) which is given in Proposition 3.1(ii).

Proposition 3.3 suggests testing procedures to determine the cointegration corank based

on the following test statistics.

B0(ϕ0, κ(ϕ0)) =

`(ϕ0)∑
j=ϕ0+1

λj,T , `(ϕ0) > ϕ0, ϕ0 = 0, 1, 2, . . . (3.18)

T0(ϕ0, κ(ϕ0)) = T

ϕ0∑
j=1

λ−1
j,T , `(ϕ0) ≥ ϕ0, ϕ0 = ϕmax, ϕmax − 1, . . . , 1. (3.19)

Corollary 3.3. Suppose that Assumptions M(i)-(iii) and P hold. If E[νt−s ⊗ νt] = E[νt ⊗
νt−s] = 0 for s 6= 0, then B0(ϕ0, κ(ϕ0)), which is sequentially defined for ϕ0 = 0, 1, 2, . . . in

(3.18), satisfies the following.

(i) If ϕ0 = ϕ, B0(ϕ0, κ(ϕ0))→d tr(S̃B,B(ϕ0)− S̃B,V (ϕ0)S̃V,V (ϕ0)†S̃V,B(ϕ0)).

(ii) If ϕ0 < ϕ, B0(ϕ0, κ(ϕ0))→p ∞.

Let ϕ̃B(α) denote the value ϕ0 such that B0(ϕ0, κ(ϕ0)) ≤ CB(α;ϕ0, κ(ϕ0)) for the first time,

where CB(α;ϕ0, κ(ϕ0)) is the same to that in Corollary 3.1. Then

(iii) P{ϕ̃B(α) = ϕ} → 1− α and P{ϕ̃B(α) < ϕ} → 0.

Corollary 3.4. Suppose that Assumptions M(i)-(iii) and P hold, and ϕmax ≥ ϕ is satisfied.

Then T0(ϕ0, κ(ϕ0)), which is sequentially defined for ϕ0 = ϕmax, . . . , 1 in (3.19), satisfies the

following.

(i) If ϕ0 = ϕ, T0(ϕ0, κ(ϕ0))→d tr(S̃V,V (ϕ0)†S̃W,W (ϕ0)).

(ii) If ϕ0 > ϕ, T0(ϕ0, κ(ϕ0))→p ∞.

Let ϕ̃T (α) = ϕ∗(α)− 1 and ϕ∗(α) denote the smallest value of ϕ0 such that T0(ϕ0, κ(ϕ0)) >

CT (α;ϕ0), where CT (α;ϕ0) is the same to that in Corollary 3.2. Then

(iii) P{ϕ̃T (α) = ϕ} → 1− α and P{ϕ̃T (α) > ϕ} → 0.
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The top-down test obtained in Corollary 3.4 is asymptotically equivalent to the test

of Nielsen et al. (2019). Depending on how to choose Π`
T (ϕ0) in the variance ratio-type

eigenvalue problem (3.17), T0(ϕ0, κ(ϕ0)) could be numerically identical to any of the two

test statistics suggested by Nielsen et al. (2019) or be something else that has different

finite-sample properties; see Remarks 3.9-3.11 in Section 3.4 for details. The suggested

bottom-up procedure given in Corollary 3.3 requires {νt}t≥1 to be serially uncorrelated,

which may restrict its use to very limited circumstances in practice. It may be deduced from

Proposition 3.3 that B0(ϕ0, κ(ϕ0)) converges to a well defined limiting distribution even if

{νt}t≥1 has serial correlation. However, the limit depends on the covariance operator and

the long-run covariance operator of {νt}t≥1, which are unknown; see our proof of Corollary

3.3 for more details.

Remark 3.7. Nielsen et al. (2019) provides trend-adjusted test statistics and their asymp-

totic null distributions for the case when the time series of interest includes a linear trend.

Corollary 3.4 can be extended to the case with only a slight modification as in Section

3.2.3. Then obviously, the top-down test obtained as a result of such an extension becomes

asymptotically equivalent to those provided by Nielsen et al. (2019).

Remark 3.8. Assumption M(iv) is not required in Corollaries 3.4 and 3.3 as long as Π`
T (ϕ0)

satisfies Assumption P. However, it will be required for our suggested data-dependent con-

struction of Π`
T (ϕ0) satisfying Assumption P.

3.3.3 Test of Chang et al. (2016)

In the functional time series literature, Chang et al. (2016) appears to be the first that

provides a cointegration corank test (the CKP test). With a slight modification in our

framework, we can derive a test that is similar to the CKP test, and its extension as well.

We consider a different variance ratio-type eigenvalue problem motivated by Shintani (2001)

and Chang et al. (2016) as follows.

Π`
T (ϕ0)CT (0)Π`

T (ϕ0)φj,T = λj,TΠ`
T (ϕ0)Λ∆X,TΠ`

T (ϕ0)φj,T , φj,T ∈ ran Π`
T (ϕ0) (3.20)

λ1,T ≥ λ2,T ≥ · · · ≥ λ`(ϕ0),T

where,

C∆X,T (s) = T−1

T∑
t=s+1

∆Xt ⊗∆Xt−s

Λ∆X,T = C∆X,T (0) +
T−1∑
s=1

k
( s
h

)
(C∆X,T (s) + C∆X,T (s)∗)
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To conveniently utilize the existing asymptotic results developed in Phillips (1995) and Shin-

tani (2001), we will replace Assumption K with the following:

Assumption K1.

(i) k(·) is twice continuously differentiable with: (a) k(0) = 1, k′(·) = 0, k
′′
(·) 6= 0; and

either (b) k(x) = 0, x ≥ 1 with limx→1 k(x)/(1−x)2 = constant, or (c) k(x) = O(x−2),

as x→ 1.

(ii) h = a1T
a2 for some a1 > 0 and a2 ∈ (0, 0.5).

We then obtain the following asymptotic properties of the eigenvalues.

Proposition 3.4. Suppose that Assumptions M, K1 and P hold. Then the eigenvalues

(λ1,T , . . . , λ`(ϕ0),T ) in (3.20) satisfy the following.

(i) For j = 1, . . . ,min{ϕ, `(ϕ0)}

T−1λj,T →d λj

(
S̃W,W (ϕ0)

)
, jointly.

(ii) For j = min{ϕ, `(ϕ0)}+ 1, . . . , `(ϕ0),

T−1λj,T →p 0, jointly.

Based on Proposition 3.4, we define two test statistics

TS(ϕ0, κ(ϕ0)) = T

ϕ0∑
j=1

λ−1
j,T , `(ϕ0) ≥ ϕ0, (3.21)

TCKP(ϕ0) = T−1 min
1≤j≤ϕ0

λj,T , `(ϕ0) = ϕ0. (3.22)

Then the top-down procedure based on each of the above test statistics is given as follows.

Corollary 3.5. Let Assumptions M, K1 and P hold. Then TS(ϕ0, κ(ϕ0)) and TCKP(ϕ0),

which are sequentially defined for ϕ0 = ϕmax, . . . , 1 in (3.21) and (3.22), satisfy the following.

(i) If ϕ0 = ϕ, TS(ϕ0, κ(ϕ0))→d tr(S̃W,W (ϕ0)†) and TCKP(ϕ0)→d min1≤j≤ϕ0 λj

(
S̃W,W (ϕ0)

)
.

(ii) If ϕ0 > ϕ, TS(ϕ0, κ(ϕ0))→p ∞ and TCKP(ϕ0)→ 0.

Let ϕ̌T (α) = ϕ∗(α)− 1 and denote ϕ∗(α) the smallest value of ϕ0 such that TS(ϕ0, κ(ϕ0)) or

TCKP(ϕ0) is on the rejection region at significance level α. Then

(iii) P{ϕ̌T (α) = ϕ} → 1− α and P{ϕ̌T (α) > ϕ} → 0.
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The test based on TCKP(ϕ0) is asymptotically equivalent to the CKP test. They can

become exactly identical by choosing some specific choice of Π`
T (ϕ0); see Remark 3.12 in

Section 3.4. In addition, the test based on TS(ϕ0, κ(ϕ0)) may be viewed as a generalization

of the cointegration rank test proposed by Shintani (2001).

It should be noted that the test based on TCKP(ϕ0) does not allow a positive slackness,

which is the reason why the argument κ(ϕ0) is dropped. If κ(ϕ0) > 0, the test statistic

converges to zero even when the null hypothesis is true. On the other hand, the test based

on TS(ϕ0, κ(ϕ0)) allows κ(ϕ0) > 0, which may be a significant advantage over TCKP(ϕ0); see

Remark 3.13 in Section 3.4.

3.4 Practical choices of Π`
T (ϕ0)

All the tests considered in the previous sections are derived under the high-level conditions

given in Assumption P. In this section, we provide practical choices of Π`
T (ϕ0) that satisfies

Assumption P under some additional low-level conditions. We first show that Π`
T (ϕ0) can be

chosen to be the projection onto the span of the eigenvectors of ΛT corresponding to the first

`(ϕ0) leading eigenvalues, which may be the most reasonable choice for our test statistics.

We need the following condition.

Assumption P1. For each ϕ0 and `(ϕ0), P CΛνP
C has at least `(ϕ0) positive eigenvalues.

Assumption P1 is very mild in our functional setting since ϕ0 and `(ϕ0) are finite and

small in general, while the number of positive eigenvalues of P CΛνP
C is expected to be

infinite or large finite. The following proposition proposes a practical data-dependent choice

of Π`
T (ϕ0).

Proposition 3.5. Let Assumptions M, K and P1 hold. (u1,T , . . . , u`(ϕ0),T ) be the eigenvectors

corresponding to the first `(ϕ0) leading eigenvalues of ΛT . Define

Π`
T (ϕ0) =

`(ϕ0)∑
j=1

uj,T ⊗ uj,T . (3.23)

Then Π`
T (ϕ0) satisfies all the requirements of Assumption P.

In our proof of Proposition 3.5, it is shown that (u1,T , . . . , uϕ,T ) converges to an orthonormal

basis of A. Then we show that the remaining eigenvectors (uϕ+1,T , . . . , u`(ϕ0),T ) converges to

the eigenvectors of P CΛνP
C corresponding to the first `(ϕ0) eigenvalues, where Assumption

M(iv) has an essential role: it guarantees some weak dependence condition on {P Cνt}t≥1

that is sufficient to have a stronger convergence result ‖P CΛTP
C−P CΛνP

C‖LH →p 0.4 From

4Convergence in norm between two compact operators imply convergence of their eigenelements (Lemma
4.2-4.4 of Bosq (2000))
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the convergence of the eigenvectors, we may deduce that Π`
T (ϕ0) constructed as in (3.23)

satisfies Assumption P.

We next show that the eigenvectors of CT (0) can be used to construct Π`
T (ϕ0) as in (3.23),

which is not a new result but a direct consequence from Theorem 4.2 of Chang et al. (2016)

and the following convenient assumption.

Assumption P2. For each ϕ0 and `(ϕ0), the eigenvectors (u1, . . . , u`(ϕ0)) of P CCν0P
C cor-

responding the first `(ϕ0) leading eigenvalues satisfy that uj /∈ ker Λν for all j = 1, . . . , `(ϕ0).

Proposition 3.6. Let Assumptions M(i)-(iii) and P2 hold, and let (u1,T , . . . , u`(ϕ0),T ) be the

eigenvectors corresponding to the first `(ϕ0) leading eigenvalues of CT (0). Define

Π`
T (ϕ0) =

`(ϕ0)∑
j=1

uj,T ⊗ uj,T .

Then Π`
T (ϕ0) satisfies all the requirements of Assumption P.

In our proof of Proposition 3.6, it is shown that (u1,T , . . . , uϕ0,T ) converges to an or-

thonormal basis of A, and (uϕ0+1,T , . . . , u`(ϕ0),T ) converges to the eigenvectors of P CCν0P
C.

The latter does not imply Assumption P(ii) in general since there could exist a nonzero

eigenvector x of P CCν0P
C satisfying x ∈ ker Λν . The role of Assumption P2 is to exclude

this possibility.

Before concluding this section, we present several important remarks on the choice of

Π`
T (ϕ0).

Remark 3.9. Clearly, Assumption P1 is a weaker requirement than Assumption P2, so the

choice given in Proposition 3.5 may be preferred in general. However, it should be noted

that Proposition 3.6 does not require Assumption M(iv), which implies that the test based

on T0(ϕ0, κ(ϕ0)) given in Corollary 3.4 can be implemented in practice regardless of whether

the condition is assumed or not. In fact, the choice of Π`
T (ϕ0) given in Proposition 3.6 makes

T0(ϕ0, κ(ϕ0)) exactly equivalent to one of the proposed top-down tests by Nielsen et al.

(2019). It is also worth noting that Nielsen et al. (2019) does not employ Assumption M(iv),

but instead assume that Λν is positive definite on C; clearly, this is a stronger condition than

Assumption P2. We thus conclude that Corollary 3.4 with the choice of Π`
T (ϕ0) given in

Proposition 3.6 corresponds to a different derivation of a test of Nielsen et al. (2019).

Remark 3.10. In Nielsen et al. (2019), they require Π`
T (ϕ0) to converge in operator norm to

Π`(ϕ0) whose range includes A. This is a weaker requirement than Assumption P employed

for all the tests considered in the present paper. An important consequence of the difference

is that they can show that T0(ϕ0, κ(ϕ0)) with Π`
T (ϕ0) constructed from the eigenvectors of

KT as in (3.23) satisfies the asymptotic properties given in Corollary 3.4. The proof of this
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result requires a different asymptotic analysis from ours; see Section 3 and Appendix of

Nielsen et al. (2019).

Remark 3.11. An attractive feature of the tests of Nielsen et al. (2019), i.e. those based on

T0(ϕ0, κ(ϕ0)) with Π`
T (ϕ0) constructed from CT (0) and KT , is that estimation of any long-run

covariance operator is not required; see Remarks 3.9 and 3.10. On the other hand, all the

other tests considered in this paper require estimation of the long-run covariance operator

of {νt}t≥1 or {∆Xt}t≥1. Since accurate estimation of the long-run covariance is known to be

difficult in practice, the tests of Nielsen et al. (2019) would be still appealing to the applied

researchers.

Remark 3.12. The choice Π`
T (ϕ0) given in Proposition 3.6 makes TCKP(ϕ0) become nu-

merically identical to the CKP test statistic provided that both employ the same long-run

covariance operator Λ∆X,T .

Remark 3.13. As discussed in Remark 10 of Nielsen et al. (2019), an essential requirement

for the existing cointegration corank tests to work well in finite samples is that ran Π`
T (ϕ0)

approximately includes A. It seems clear that estimation of the attractor space with ϕ-

dimensional projection is much more difficult than estimation of any superspace including

the attractor space with (ϕ + %)-dimensional projection for some positive integer %. This

is the reason why κ(ϕ0) > 0 is recommended in finite samples even if the asymptotic null

distribution does not depend on κ(ϕ0). In addition, it is not recommended to set κ(ϕ0) too

big either, which is due to inaccuracy of eigenvalues of a high-dimensional covariance matrix,

see Section 3.5 of Nielsen et al. (2019).

Remark 3.14. (Inclusion of a linear trend) Suppose that our time series satisfies (3.13).

Then we may simply replace ΛT (resp. CT (0)) with Λ̃T (resp. C̃T (0)) in Proposition 3.5 (resp.

3.6) and use the associated eigenvectors to construct Π`
T (ϕ0). Our proofs of the propositions

include short discussions on the case that the time seres of interest includes a linear trend.

Remark 3.15. (Estimation of A) Oftentimes, we are interested in estimation of A instead

of its dimension. Proposition 3.5 (resp. 3.6) shows that the first ϕ eigenvectors of ΛT (resp.

CT (0)) converge in probability to an orthonormal basis of A. Therefore, estimation of A

reduces to that of the cointegration corank. Nielsen et al. (2019) also shows that the first ϕ

eigenvectors of KT converge to an orthonormal basis of A, see Theorem 3 and Remark 11 of

their paper.

4 Monte Carlo simulations

We established asymptotic properties of our test statistics in the previous sections. From

a practical point of view, it is also of interest to check how those are revealed with sample
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sizes that are typical for economic or statistical time series. For this purpose, we report the

result of a Monte Carlo experiment that is similarly designed to that of Nielsen et al. (2019).

We consider the functional AR(1) model with unit root. Let {ζj}20
j=1 denote the functions

defined as follows: for x ∈ [0, 1],

ζj(x) =


√

2 sin(2πjx), for j is odd,
√

2 cos(2πjx), for j is even.

Adding ζ21(x) = 1{x ∈ [0, 1]}, the collection {ζj}21
j=1 becomes the first 21 Fourier basis

functions of H = L2[0, 1]. We let I denote the collection of integers given by I = {1, . . . , 21},
and define a subset I1 of I as follows.

I1 = {1, 2, . . . , 10}.

We hereafter let {[1], . . . , [ϕ]} denote randomly selected ϕ(≤ 5) elements from I1 and let

([ϕ + 1], . . . , [21]) denote randomly ordered elements of I \ {[1], . . . , [ϕ]}. We generate the

functional time series as

Xt = µ+
21∑
j=1

θj〈ζ[j], Xt−1 − µ〉ζ[j] + εt (4.1)

where {εt}Tt=1 is a sequence of standard Brownian Bridges independent across t, and

θj =

 1 for j ≤ ϕ,

θ(j−ϕ) for j > ϕ,
(4.2)

for θ = 0.1 and 0.7. The mean function µ in (4.1) is set to a linear combination of {ζj}21
j=1:

specifically µ(x) =
∑21

j=1 gjζj(x) for x ∈ [0, 1], where {gj}21
j=1 are independent standard

normal random variables. Given (4.1) and (4.2), it may be deduced that the cointegration

corank is ϕ and the attractor space A is given by the span of {ζ[1], . . . , ζ[ϕ]}. Note that,

µ and A are different across different realizations of the DGP (4.1), which may be helpful

to mitigate the effect caused by specifying those. It should also be noted that this setting

allows the attractor space to include frequently oscillating functions on [0, 1], e.g. ζ10(x) =√
2 cos(10πx), x ∈ [0, 1]. As observed by Nielsen et al. (2019), this tends to make Π`

T (ϕ0)

obtained from the eigenvectors of ΛT or CT (0) a less accurate estimate of Π`(ϕ0), which

in turn makes finite-sample properties of a cointegration corank test poor. The functional

observations are constructed by smoothing {Xt}Tt=1 observed at 200 regularly spaced points

of [0, 1] using 30 cubic B-spline basis functions. Throughout our simulation study, the total

number of replications for each statistic is 4,000.
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In Appendix C, we consider a few different modified DGPs and report the simulation

results. First, we let the attractor space be fixed to the span of {ζ1, . . . , ζϕ}. In this case,

the attractor includes more smooth (less oscillating) functions, so Π`
T (ϕ0) tends to be more

accurate estimate of Π`(ϕ0). In addition, we modify the DGP (4.1) by setting {ζj}21
j=1

to the first 21 Legendre polynomials as in Nielsen et al. (2019) and examine finite-sample

properties of the tests. We then also fix the attractor space to the span of the first ϕ Legendre

polynomials to see how this change affects finite-sample properties.

4.1 Finite-sample performance of the bottom-up test

We investigate the finite-sample performance of the proposed bottom-up test (the B test)

for T = 150, 350 and 750. The baseline bandwidth, denoted hb, is set to 0.6T 4/9. The

sample long-run covariance operator ΛT is computed with the Parzen kernel k(·) and the

selected bandwidth.5 To see the effect of bandwidth choice on finite-sample properties, we

also consider h = c hb for c = 1.5 and 1/1.5, respectively. We assume `(ϕ0) = ϕ0 + 2

as suggested in Nielsen et al. (2019) for their top-down tests, so the slackness κ(ϕ0) is 2

regardless of ϕ0. Based on the selected slackness and Proposition 3.5, the projection Π`
T (ϕ0)

for each ϕ0 is constructed from the eigenvectors corresponding to the first ϕ0 + 2 eigenvalues

of ΛT . To calculate finite-sample power of the test, we generate (4.1) with ϕ = ϕ0 + q for

q = 1, 2.

Table 2 summarizes our simulation results for different values of θ and T . The B test

with the baseline bandwidth has excellent size control for all considered values of ϕ0; a slight

over-rejection is reported only when θ = 0.7, ϕ = 0 and T = 150. Finite-sample power tends

to be decreasing in ϕ0, and increasing in any of T and q, which are easily expected from the

asymptotic properties of the test.6 Especially when T = 150 and q = 1 or 2, the test loses

power more dramatically as ϕ0 gets larger, which suggests that the cointegration corank

tends to be underestimated when it is bigger and T is smaller. However, the lack of power

rapidly disappears as T gets larger, so the test appears to have reasonable finite-sample size

and power when T ≥ 350 in our simulation.

The effect of bandwidth choice on finite-sample size and power of the test coincides with

our insight from asymptotic theory (Remark 3.2). When θ = 0.7, our bottom-up test with

h = hb/1.5 exhibits a slight over-rejection, but has higher power; see Table 2(d). If we

considered θ higher than 0.7, over-rejection would be more severe. When θ = 0.1, on the

other hand, a smaller bandwidth choice seems to increase finite-sample power without causing

over-rejection, which is also as expected in Remark 3.2; see also Table 2(c). Provided that

5Then k(·) and h = hb satisfy both of Assumptions K and K1.
6Even if we only report the case when q = 1 and 2 in Table 2, finite-sample power was investigated for

all positive integer q ≤ 4 and found they tend to monotonically increase in q.
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our test with the baseline bandwidth is not severely over-sized, it is expected that choosing

h = hb×1.5 would make our test too conservative. This can be checked in Table 2(e) and (f);

the reported finite-sample size is below the nominal level when ϕ0 ≥ 1 and the finite-sample

power for each ϕ0 is lower compared to those obtained with the baseline bandwidth.

Our simulation results, including those reported in Appendix C for a few different DGPs,

suggest that the proposed B test overall works well.

4.2 Finite-sample performances of the top-down tests

We next check the finite-sample performances of our top-down tests based on T (ϕ0, κ(ϕ0))

and T0(ϕ0, κ(ϕ0)) (the T test and the T0 test) that are given by the reverses of the bottom-

up tests in Corollaries 3.1 and 3.3, respectively. Based on Remark 3.5, we employ a smaller

bandwidth h = 0.6T 2/9 with the Parzen kernel7 to compute ΛT , which seems to be enough

for the proposed top-down tests not to be severely over-sized. We also assume `(ϕ0) = ϕ0+2,

and the projection Π`
T (ϕ0) is constructed from the first ϕ0 + 2 leading eigenvectors of ΛT

based on Proposition 3.5. For comparison purposes, the tests based on two another versions

of T0(ϕ0, κ(ϕ0)) associated with Π`
T (ϕ0) constructed from the eigenvectors of KT and CT (0)

respectively, are also considered; they are the variance ratio tests suggested by Nielsen et al.

(2019), and denoted by NSSK and NSSC, respectively. NSSK is preferred to NSSC by the

authors due to its better finite-sample performance. To calculate finite-sample power of each

test, we generate (4.1) with ϕ = ϕ0 − 1.

We also provide the results for the test based on TS(ϕ0, κ(ϕ0)) (the TS test) which is

obtained from a different variance ratio-type eigenvalue problem. The projection Π`
T (ϕ0)

is constructed in the same way to that of T (ϕ0, κ(ϕ0)), and the long-run covariance

Π`
T (ϕ0)Λ∆X,TΠ`

T (ϕ0) is calculated with the Parzen kernel and the bandwidth choice pro-

posed by Andrews (1991). In this section, we do not report the results of the CKP test

and the test based on TCKP(ϕ0) (the TCKP test) since they tend to be severely over-sized for

the considered DGP even when T = 750. This may be due to inaccuracy of Π`
T (ϕ0); see

Remark 3.13. However, we need to take into consideration that the CKP test is developed

for a density-valued cointegrated time series and the attractor space A is in general expected

to be given by the span of smooth functions, which is contrary to that our DGP allows

A to include frequently oscillating functions. If we fix the attractor space to the span of

{ζ1, . . . , ζϕ} and T = 750, then the CKP test is not severely over-sized unless ϕ ≥ 4 and

the TCKP test is only slightly over-sized for all considered ϕ. If we set {ζj}21
j=1 to the first

21 Legendre polynomials and fix the attractor space to the span of {ζ1, . . . , ζϕ}, then both

tests work well even when T is moderate; see Appendix C for more details.

Table 3 reports finite-sample sizes and powers for different values of θ and T . NSSC may

7ck = 0.75 for the Parzen kernel.
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Table 2: Simulation results for the bottom-up test with κ(ϕ0) = 2

(a) θ = 0.1, baseline bandwidth

T ϕ0=0 1 2 3 4 5
size

150 4.7 2.8 2.2 1.5 1.2 1.0
350 4.3 3.6 3.4 3.0 2.5 2.3
750 5.2 4.8 4.6 4.2 3.5 3.7

power, q = 1
150 88.0 59.3 41.9 27.6 17.8 10.5
350 95.3 83.8 78.8 72.4 65.7 58.7
750 98.2 94.5 93.4 93.0 90.6 89.7

power, q = 2
150 98.4 82.7 65.5 50.8 32.9 23.8
350 100 99.4 97.8 95.9 90.4 83.0
750 100 100 100 100 100 100

(b) θ = 0.7, baseline bandwidth

T ϕ0=0 1 2 3 4 5
size

150 7.7 4.4 3.5 3.0 1.8 2.0
350 6.8 4.8 4.7 4.8 4.6 4.3
750 6.1 5.2 5.4 4.6 4.4 5.3

power, q = 1
150 87.8 59.2 43.8 29.7 18.3 12.0
350 95.0 84.4 78.7 75.2 67.6 58.2
750 98.1 94.0 94.2 93.2 92.5 90.2

power, q = 2
150 98.0 83.2 66.4 50.9 35.3 25.1
350 99.9 98.1 96.4 92.9 87.7 79.2
750 100 100 99.9 99.8 99.6 98.9

(c) θ = 0.1, baseline bandwidth/1.5

T ϕ0=0 1 2 3 4 5
size

150 5.0 3.8 3.6 2.8 2.2 1.9
350 4.7 4.8 4.0 4.3 3.9 3.6
750 4.9 5.1 4.3 4.4 4.3 4.2

power, q = 1
150 93.8 78.5 66.1 51.6 39.0 30.7
350 98.4 94.0 93.2 92.5 90.0 86.6
750 99.6 98.6 98.6 99.0 99.0 98.6

power, q = 2
150 99.5 93.9 88.2 76.0 65.9 54.9
350 100 99.8 99.6 99.1 98.6 96.4
750 100 100 100 100 100 100

(d) θ = 0.7, baseline bandwidth/1.5

T ϕ0=0 1 2 3 4 5
size

150 10.8 8.0 7.5 8.6 7.5 6.4
350 9.0 7.2 6.9 9.0 8.5 9.8
750 7.0 7.0 6.6 7.0 7.2 7.5

power, q = 1
150 93.9 77.4 64.4 54.5 41.8 34.4
350 98.4 94.4 93.4 91.9 89.4 85.3
750 99.5 98.8 98.8 99.0 98.9 98.8

power, q = 2
150 99.2 93.1 86.1 77.6 65.7 57.1
350 100 99.7 99.3 98.8 97.6 96.0
750 100 100 100 100 100 99.9

(e) θ = 0.1, baseline bandwidth×1.5

T ϕ0=0 1 2 3 4 5
size

150 3.9 2.0 1.2 1.0 0.5 0.2
350 5.4 3.0 1.9 2.0 1.5 1.2
750 4.6 4.4 3.2 3.2 2.6 2.9

power, q = 1
150 78.6 38.9 18.8 9.3 4.4 2.3
350 89.8 67.0 53.4 42.4 33.2 23.8
750 95.9 84.3 80.0 75.6 69.8 62.8

power, q = 2
150 95.2 63.9 38.9 20.8 9.7 5.8
350 99.6 95.7 90.3 82.0 67.4 51.3
750 99.9 99.6 99.4 99.4 98.9 97.6

(f) θ = 0.7, baseline bandwidth×1.5

T ϕ0=0 1 2 3 4 5
size

150 5.4 2.5 1.0 0.7 0.6 0.4
350 5.4 3.7 2.5 2.5 1.8 2.0
750 5.0 3.7 3.5 3.1 2.8 2.9

power, q = 1
150 79.0 39.8 19.7 9.6 4.8 2.7
350 91.3 67.0 55.2 44.2 33.2 24.0
750 95.8 83.7 80.5 74.8 67.1 62.6

power, q = 2
150 94.9 63.0 37.7 20.7 9.3 5.5
350 99.5 93.8 86.3 76.6 60.2 46.0
750 99.9 99.6 99.0 97.9 97.1 94.8

Notes: (i) The results are based on 4,000 Monte Carlo replications. (ii) Power is calculated when the
cointegration corank is ϕ0 + q.
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be the least preferred in practice if we have only a moderate number of observations: it

exhibits a severe over-rejection when T is small and ϕ is high. On the other hand, NSSK

is relatively conservative. When T is small, it is under-sized at every considered values of

ϕ and displays relatively lower power, which is more prominent when θ = 0.7. However,

this is not a general finite-sample property of NSSK: it turns out in Appendix C that a

moderate change of the simulation DGP can make NSSK reject the correct null hypothesis

more frequently than the T test or the T0 test does. Finite-sample sizes and powers of the

T test and the T0 test seem to be between those of NSSK and NSSC. More specifically, the

reported finite-sample size of each of the suggested tests is close to the nominal size even

when T = 150, and has better power than NSSK. The T0 test exhibits a slight over-rejection

when ϕ ≥ 4. Among the considered tests, the TS test is the most conservative when T is

moderate; it has smaller finite-sample size and power than those of NSSK. Given the results

reported in Table 3, the T test or the T0 test would be the most preferred in practice. Even

if the considered top-down tests show different finite-sample properties when T is moderate,

they become quite similar to each other when T = 750, as suggested by asymptotic theory.

Our simulation results reported in Tables 2 and 3 suggest that the proposed top-down

procedures based on the T test and the T0 test may help the correct determination of the

cointegration corank due to their higher power against the closest alternative hypothesis in

small samples. For example, when θ = 0.7, T = 150 and the true cointegration corank is 4,

the rejection frequency of B(3, 2) with the baseline bandwidth is 29.7%, but those of T (5, 2)

and T0(5, 2) are 55.2% and 70.1%, respectively. This implies that there is a better chance

to have the true cointegration corank from the proposed top-down procedures starting at

ϕmax = 5. Such a gain appears to be prominent when T is small, but become smaller as T

increases. This is a clear evidence suggesting that the top-down procedures are still useful

in practice as long as a proper choice of ϕmax is given.

5 Empirical applications

5.1 Age-specific shares of full-time workers

We first apply our methodology to the time series of U.S. age-specific shares of full-time

workers, which may be interpreted as a measure of the quality of employment, observed

monthly from January 1980 to May 2019. The raw data is available from the CPS at

https://www.ipums.org/. The Bureau of Labor Statistic (BLS) defines a full-time worker

as who works 35 hours or more a week. However for economic or noneconomic reasons,8

such as vacation, health issues, weather, etc., a worker who ‘usually’ works full time can be

8See https://www.bls.gov/cps/cpsaat20.htm
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Table 3: Simulation results for top-down tests

θ = 0.1, size

T Test ϕ0 = 1 2 3 4 5

150 T 5.0 4.2 4.8 4.7 6.4
T0 5.1 6.0 6.8 8.9 9.0
NSSK 3.7 2.4 2.0 1.9 1.3
NSSC 10.5 22.2 34.7 43.8 49.8
TS 3.4 1.0 0.2 0.0 0.0

350 T 4.8 4.3 3.7 3.8 3.6
T0 5.5 4.8 4.8 4.5 4.9
NSSK 4.8 4.4 3.7 3.6 3.8
NSSC 5.5 7.4 10.3 13.8 17.5
TS 4.6 3.0 2.5 1.4 0.6

750 T 5.0 4.9 4.4 4.6 4.0
T0 5.6 5.6 5.0 4.8 5.2
NSSK 4.8 4.8 4.9 4.2 4.7
NSSC 5.2 5.0 5.1 4.9 5.3
TS 4.5 4.2 3.6 3.1 1.7

θ = 0.7, size

T Test ϕ0 = 1 2 3 4 5

150 T 4.3 4.3 4.8 5.1 4.8
T0 4.6 5.0 6.6 8.0 7.7
NSSK 2.2 1.5 0.7 1.0 0.6
NSSC 10.7 22.0 32.7 38.2 38.1
TS 3.8 2.7 0.8 0.3 0.1

350 T 4.4 3.9 3.8 3.8 3.2
T0 5.0 4.2 4.2 4.8 4.6
NSSK 3.8 3.8 3.0 3.2 2.5
NSSC 5.6 9.0 13.7 16.9 18.8
TS 3.8 3.2 2.0 1.6 0.6

750 T 5.2 4.5 4.1 3.7 4.0
T0 5.1 4.8 4.8 4.7 4.7
NSSK 5.8 4.0 4.3 4.8 4.8
NSSC 5.6 5.3 4.9 6.0 6.8
TS 3.6 3.8 2.9 2.5 2.2

θ = 0.1, power

T Test ϕ0 = 1 2 3 4 5

150 T 99.0 94.4 92.5 91.8 89.8
T0 99.8 97.7 97.8 97.3 97.2
NSSK 73.4 59.2 53.2 49.8 44.1
NSSC 99.9 97.4 98.0 98.4 97.9
TS 100 48.0 9.6 1.4 0.1

350 T 100 99.2 99.3 99.5 99.8
T0 100 100 99.9 99.9 100
NSSK 99.8 93.8 95.0 96.1 96.2
NSSC 100 100 99.9 99.9 100
TS 100 100 94.7 57.0 24.6

750 T 100 100 100 100 100
T0 100 100 100 100 100
NSSK 100 100 99.6 99.8 100
NSSC 100 100 100 100 100
TS 100 100 100 100 98.5

θ = 0.7, power

T Test ϕ0 = 1 2 3 4 5

150 T 87.0 79.4 70.5 64.5 55.2
T0 91.0 85.0 79.8 76.3 70.1
NSSK 47.2 32.4 23.8 19.0 13.4
NSSC 95.5 88.3 87.3 85.4 82.1
TS 100 69.7 20.7 5.4 1.0

350 T 98.0 95.8 94.9 93.5 91.9
T0 99.0 98.0 97.4 96.6 96.3
NSSK 94.7 82.8 81.9 79.4 74.8
NSSC 99.7 98.7 98.4 97.8 97.0
TS 100 100 98.7 78.9 45.8

750 T 99.9 99.4 99.5 99.6 99.4
T0 100 99.8 99.9 99.9 99.8
NSSK 100 98.2 98.0 98.5 98.4
NSSC 100 99.9 99.8 99.8 100
TS 100 100 100 100 99.9

Notes: (i) The results are based on 4,000 Monte Carlo replications. (ii) Power is calculated when the

cointegration corank is ϕ0 − 1.

classified as a part-time worker, and vice versa. Therefore, the computed shares of full-time

workers based on the BLS’s definition may not be clearly interpreted as a measure of the

quality of employment. To avoid this, we redefine a full-time worker as who usually work 35

hours or more a week, which is revealed by the variable ‘wkstat’ provided in the CPS. We

construct functional observations from the raw data as in Nielsen et al. (2019) that considers

the time series of U.S. age-specific employment rates. For age a, the age-specific share of
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Figure 1: Age group characteristics

(a) younger age group (b) older age group (c) all ages

full-time workers is calculated by

Xa,t =

∑nt

i=1wi,tZi,t1{ai,t = a}∑nt

i=1wi,t1{ai,t = a}

where nt is the number of employed individuals aged 20 to 64 at time t and wi,t, ai,t and Zi,t

denote the design weight (WTFINL in CPS), age, and full-time status of individual i at time

t, respectively. Zi,t = 1 if individual i works usually full time and 0 otherwise. Then the time

series of shares of full-time workers specific to each age {Xa,t, a = 20, . . . , 64} are seasonally

adjusted by the software package provided by the US Census Bureau. The age-specific full

time share of full-time worker takes values between 0 and 1 by construction, so we consider

the logit transformation ψ(Xa,t) instead of Xa,t as in Nielsen et al. (2019). We then obtain

the functional observations {Xt(u)}t≥1 for u ∈ [20, 64] by smoothing ψ(Xa,t) over a using 30

cubic B-spline basis functions.

In Figure 1 we plot several scalar processes {〈Xt, v〉}t≥1 (called the v-characteristic of

{Xt}t≥1 in Franchi and Paruolo (2019)) to explore characteristics of the functional time

series for v = v1, v2 and v3 defined as follows:

v1(x) =
1

5
1 {x ≤ 25} , v2(x) =

1

39
1 {x > 25} , v3(x) =

1

44
, x ∈ [20, 64]

Clearly each characteristic is understood as the average of (logit) shares of full-time workers

corresponding to each age group. It should be noted that the characteristic of the younger

age group is quite distinct from that of the older age group. So if we only analyze the time

series of average shares over all ages, such a distinct characteristic would be discarded. This

may be a big advantage of this functional approach. We expect that there exists at least one

stochastic trend since each characteristic in Figure 1 appears nonstationary.

In this empirical application, we fix `(ϕ0) to ϕ0 + 2 for all ϕ0 and k(·) to the Parzen

kernel. For the B test, we consider two bandwidth choices h = 9 and 12. We also provide

the results for the top-down tests T , T0, NSSK and NSSC that are considered in Section 4.

ϕmax = 6 is employed for all the top-down tests and h = 3 is employed for the T and T0
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tests. Note that the plot for {〈Xt, v1〉}t≥1 suggests the possible presence of a long-term trend

over time. Thus, it would be more plausible to consider the tests adjusted to a linear trend

in this example.

Table 4 reports the test results under two different specifications of deterministic compo-

nents. Figure 2 displays the functional observations and the characteristics of the functional

residuals {Ut}t≥1 given in (3.14) with respect to the first five eigenvectors of Λ̃T computed

with h = 12. The B test adjusted to a linear trend concludes that the cointegration corank

is 3 or 4 at 5% significance level depending on the choice of h. This suggests that ϕmax = 6

would not have a significant chance to be smaller than the true cointegration corank. We

thus may not have to worry about our initial choice ϕmax = 6 employed for the top-down

tests. Among six different tests adjusted to a linear trend, only the B test with h = 12

concludes that the cointegration corank is 3 at 5% significance level while the others do

that it is 4. As a consequence of Proposition 3.5 and Remark 3.14, we may expect that

the characteristics with respect to the first ϕ eigenvectors behave as unit root processes.

However, the u4,T -characteristic, displayed in Figure 2(e), does seem to be a persistent sta-

tionary process rather than a unit root process, at least to some extent. For this reason,

we would be inclined to conclude that the considered functional time series are driven by

three stochastic trends rather than four. Note that all the considered top-down tests give

us different results depending on whether ϕmax > 3 and ϕmax = 3. This suggests that there

could be disagreement due to the choice of ϕmax; in this example, the researcher’s confidence

in nonstationarity of the u4,T -characteristic may matter. The B test with h = 9 and 12 also

give us different estimates, but it is a rather natural consequence resulting from differences

in how high persistence of the underlying stationary component should be accommodated

in the model.

5.2 Hourly wage densities

We consider a monthly sequence of U.S. hourly real wage densities running from January

1982 to June 2019, which is a revisit of the empirical application provided in Seo and Beare

(2019) with an extended time span. To embed probability density functions (wage densities)

into a Hilbert space, we follow the transformation approach proposed by Seo and Beare

(2019). Let {Xt}t≥1 denote the time series of wage densities whose support K ⊂ R for all t.

For the density function fM of any arbitrary measure M whose support is K, we define

X̃t(u) = log (Xt/fM) (u)−
∫

log (Xt/fM) (u)dM(u), u ∈ K (5.1)

XM,t(v) = X̃t ◦QM(v), v ∈ [0, 1] (5.2)
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Table 4: Test results for logit of age-specific shares of full-time employment

Test m ϕ0 = 0 1 2 3 4 5 6

Mean adjusted

B 9 7.593∗∗∗ 1.787∗∗∗ 0.376∗∗∗ 0.209∗∗∗ 0.072 0.045 0.045

12 5.746∗∗∗ 1.364∗∗∗ 0.356∗∗∗ 0.164∗∗ 0.065 0.053 0.043

T 3 - 10.53 56.77 382.64 731.05 2456.2∗∗ 5025.3∗∗∗

T0 3 - 10.61 58.27 460.65 813.08 3079.2∗∗∗ 6649.1∗∗∗

NSSK - - 10.65 58.93 389.58 802.34 2484.8∗∗ 6389.5∗∗∗

NSSC - - 10.61 57.10 403.88 689.61 3058.8∗∗∗ 4879.0∗∗∗

Trend adjusted

B 9 1.811∗∗∗ 0.338∗∗∗ 0.267∗∗∗ 0.097∗∗ 0.053 0.052 0.037

12 1.381∗∗∗ 0.413∗∗∗ 0.217∗∗∗ 0.086∗ 0.049 0.048 0.044

T 3 - 45.81 256.08 623.99 1844.7 3755.8∗∗ 7218.0∗∗∗

T0 3 - 47.22 292.17 681.65 2156.5∗ 4821.9∗∗∗ 9401.7∗∗∗

NSSK - - 47.75 295.26 666.72 2084.6∗ 4405.6∗∗∗ 9644.5∗∗∗

NSSC - - 47.08 333.44 698.73 2061.9∗ 3538.8∗∗ 9293.9∗∗∗

Notes: The number of observations is T = 473. We use ∗, ∗∗, and ∗ ∗ ∗ to denote rejection at 10%, 5%, and

1% significance level, respectively. The statistic is bold-faced if it is not rejected for the first time at 5%

significance level.

Figure 2: Monthly age-specific shares of full-time employment January 1980 to May 2019

(a) Functional observations (b) u1,T -characteristic (c) u2,T -characteristic

(d) u3,T -characteristic (e) u4,T -characteristic (f) u5,T -characteristic

where, QM is the quantile function for M and ◦ denotes composition. Then the transformed

series {XM,t}t≥1 are regarded as a time series taking values in L2
0[0, 1], the collection of all
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f ∈ L2[0, 1] satisfying
∫
f(x)dx = 0, which is a Hilbert space. Since the transformation

Xt 7→ XM,t is a bijection,9 we analyze the time series {XM,t}t≥1 instead of the original

density-valued time series {Xt}t≥1.

XM,t for each t is computed in a nearly identical way to that in Seo and Beare (2019).

First, individual wages, reported in the CPS database, are adjusted to January 2000 prices

using monthly consumer price index obtained from the Federal Reserve Economic Data

(FRED). To implement the transformation given in (5.1) and (5.2), the log wage densities

are computed by applying local likelihood density estimation (Loader, 1996, 2006), excluding

the top and bottom 1.5 % of reported wages due to anomalies associated with the top

coding and near-zero wages. After applying the filtering, the number of design-weighted

observations used to compute the log wage density in each month 7056-9523. Appendix D

briefly summarizes how to obtain the log wage densities with these observations. Measure

M, called the reference measure, is set to the log-normal distribution of which parameters

are chosen to minimize the mean square distance to the time average wage density X̄T . We

then apply the transformations given in (5.1) and (5.2) to obtain {XM,t}Tt=1. Figure 3(a) and

(b) display the original densities and the transformed densities, respectively.

For the representation of functions in L2
0[0, 1], we use 50 quadratic B-spline basis functions

projected onto L2
0[0, 1]. Even if we focus on the tests that are adjusted to a nonzero mean,

we also report the results for those adjusted to a linear trend. It might seem to be unusual to

consider a linear trend for a density-valued time series. However, the transformed time series

{XM,t}t≥1 may include any arbitrary deterministic component and it is properly interpreted

in a Hilbert space of probability density functions; see Seo and Beare (2019). Table 5 reports

the test results and Figure 3(c)-(i) display the characteristics of the demeaned transformed

series with respect to the first seven eigenvectors of ΛT computed with h = 12.

The B test adjusted to a nonzero mean with h = 9 and 12 conclude that the cointegration

corank is 6 at 5% significance level. On the other hand, the top-down tests do not reject the

top hypothesis H0 : ϕ = 6, so the estimated cointegration corank is ϕmax for any ϕmax ≤ 6.

So the researcher’s conjecture on an upper bound of ϕ may affect the estimate in this case.

Non-rejection of the top-hypothesis may be an indication of the possibility that ϕmax < ϕ

(see Remark 3.3). We therefore conclude that ϕmax may be misspecified and needs to be

adjusted to a higher value. It may be deduced from Remark 3.3 that without any prior infor-

mation on ϕ, we need to provide ϕmax high enough so that the first several null hypotheses

are rejected to ensure ϕmax ≥ ϕ with high probability. However, as pointed out by Nielsen

et al. (2019), it should be noted that it is not a good idea to start with a very large ϕmax

due to potential inaccuracy of eigenvalues of a high-dimensional covariance matrix. Further-

more, note that the sample covariance operators Π`
T (ϕ0)KTΠ`

T (ϕ0), Π`
T (ϕ0)ΛTΠ`

T (ϕ0) and

9In fact, it is an isomorphism between L2
0[0, 1] and a Hilbert space of probability density functions whose

support is K; see Seo and Beare (2019) for more details.
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Table 5: Test results for hourly wages

Test m ϕ0 = 0 1 2 3 4 5 6

Mean adjusted

B 9 5.612∗∗∗ 1.018∗∗∗ 0.426∗∗∗ 0.335∗∗∗ 0.160∗∗∗ 0.100∗∗∗ 0.052

12 4.255∗∗∗ 0.778∗∗∗ 0.320∗∗∗ 0.269∗∗∗ 0.138∗∗∗ 0.083∗∗ 0.049

T 3 - 11.09 89.16 341.08 606.0 1083.2 2143.7

T0 3 - 11.33 94.91 359.97 723.1 1505.4 2934.9

NSSK - - 11.64 99.65 356.27 829.3 1458.5 2849.7

NSSC - - 11.40 95.17 358.50 722.2 1868.8 2928.6

Trend adjusted

B 9 0.889∗∗∗ 0.593∗∗∗ 0.357∗∗∗ 0.189∗∗∗ 0.136∗∗∗ 0.083∗∗∗ 0.048∗

12 0.679∗∗∗ 0.456∗∗∗ 0.274∗∗∗ 0.157∗∗∗ 0.115∗∗∗ 0.071∗∗ 0.046

T 3 - 70.40 271.31 561.37 1057.0 1579.8 2979.8

T̃0 3 - 79.64 288.26 614.12 1285.0 2094.9 4275.6

NSSK - - 76.32 286.44 613.20 1217.3 2092.3 4107.4

NSSC - - 79.78 287.22 615.75 1282.0 2509.2 4266.9

Notes: The number of observations is T = 450. We use ∗, ∗∗, and ∗ ∗ ∗ to denote rejection at 10%, 5%, and

1% significance level, respectively. The statistic is bold-faced if it is not rejected for the first time at 5%

significance level.

Π`
T (ϕ0)CT (0)Π`

T (ϕ0) tend to be nearly singular as ϕ0 gets larger.10 Such a near-singularity

can make extreme (small or large) eigenvalues computed with standard methods inaccurate,

see e.g. Bunse-Gerstner (1984).11 Therefore it would be better to choose ϕmax only slightly

bigger than ϕ if possible. In this situation, we may refer to the estimate from the B test with

different choices of h. Since our simulation study suggests that power of the B test rapidly

increases as H1 gets farther away from H0, we expect ϕmax ≈ 9 would not have a significant

chance to be smaller than the true cointegration corank.

Depending on which testing procedure is used, the cointegration corank is 6 or ≥ 6.

However, at least to some extent, the u7,T -characteristic with respect to the demeaned trans-

formed series (Figure 3(i)) appears to be a persistent stationary process. We thus would be

inclined to conclude that the cointegration corank is 6.

10Note KT , ΛT and CT (0) are all Hilbert-Schmidt operators. This implies the smallest eigenvalues of
Π`

T (ϕ0)KT Π`
T (ϕ0), Π`

T (ϕ0)ΛT Π`
T (ϕ0) and Π`

T (ϕ0)CT (0)Π`
T (ϕ0) tends to zero as ϕ0 gets larger.

11In this specific empirical example, we found that ϕ0 ≈ 16 makes those nearly singular.
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Figure 3: Monthly wage densities January 1980 to June 2019

(a) Wage densities (b) Transformed densities (c) u1,T -characteristic

(d) u2,T -characteristic (e) u3,T -characteristic (f) u4,T -characteristic

(g) u5,T -characteristic (h) u6,T -characteristic (i) u7,T -characteristic

6 Conclusion

We have proposed testing procedures to determine the cointegration corank of functional

time series taking values in a Hilbert space, which can be also used to estimate the dominant

components of cointegrated time series in the long-run. Our bottom-up testing procedure

generalizing the functional KPSS test and the entailed top-down test given as its reverse

may be used together for a better examination of the cointegration corank in practice.

We also found some theoretical connections between the existing testing procedures and

ours. We applied our methodology to two empirical datasets, U.S. age-specific shares of full-

time workers and wage densities, and found evidence of multiple stochastic trends in both

applications. Our empirical analysis also illustrates how the proposed bottom-up procedure

can complement the top-down procedures in practice.

38



References

Andrews, D. W. K. (1991): “Heteroskedasticity and Autocorrelation Consistent Covari-

ance Matrix Estimation,” Econometrica, 59, 817–858.

Aue, A. and A. Van Delft (2017): “Testing for stationarity of functional time series in

the frequency domain,” arXiv preprint arXiv:1701.01741.

Bart, H., I. Gohberg, M. Kaashoek, and A. C. M. Ran (2007): Factorization of

Matrix and Operator Functions: The State Space Method, Birkhuser Basel.

Beare, B. K., J. Seo, and W.-K. Seo (2017): “Cointegrated Linear Processes in Hilbert

Space,” Journal of Time Series Analysis, 38, 1010–1027.

Beare, B. K. and W.-K. Seo (2019): “Representation of I(1) and I(2) autoregressive

Hilbertian processes,” Econometric Theory, in press.

Bosq, D. (2000): Linear Processes in Function Spaces, Springer-Verlag New York.

Boswijk, H. P., M. Jansson, and M. Ø. Nielsen (2015): “Improved likelihood ratio

tests for cointegration rank in the VAR model,” Journal of econometrics, 184, 97–110.

Breitung, J. (2002): “Nonparametric tests for unit roots and cointegration,” Journal of

Econometrics, 108, 343–363.

Bunse-Gerstner, A. (1984): “An algorithm for the symmetric generalized eigenvalue

problem,” Linear Algebra and its Applications, 58, 43–68.

Chang, Y., C. S. Kim, and J. Y. Park (2016): “Nonstationarity in time series of state

densities,” Journal of Econometrics, 192, 152 – 167.

Chen, X. and H. White (1998): “Central limit and functional central limit theorems for

Hilbert-valued dependent heterogeneous arrays with applications,” Econometric Theory,

14, 260–284.

Engl, H. W. and M. Nashed (1981): “Generalized inverses of random linear operators

in Banach spaces,” Journal of Mathematical Analysis and Applications, 83, 582 – 610.

Franchi, M. and P. Paruolo (2019): “Cointegration in functional autoregressive pro-

cesses,” Tech. rep., Econometric Theory, in press.

Granger, C. W. J. (1981): “Some properties of time series data and their use in econo-

metric model specification,” Journal of Econometrics, 16, 121 – 130.

39



Harris, D. (1997): “Principal components analysis of cointegrated time series,” Economet-

ric Theory, 13, 529–557.

Hörmann, S. and P. Kokoszka (2010): “Weakly dependent functional data,” The Annals

of Statistics, 38, 1845–1884.
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A Random Linear Operators

In this section, we briefly introduce random linear operators and their convergence for our

mathematical proofs given in Section B. Our primary source is Skorohod (1983).

A.1 Random linear operators and convergence

Let A be a mapping satisfying Ax is H-valued random variable for all x ∈ H and

(S1) for all x1, x2 ∈ H and a, b ∈ R

P {A(ax1 + bx2) = aAx1 + bAx2} = 1

(S2) Ax is continuous in x: for all δ > 0

lim
xj→x

P {‖Axj − Ax‖ > δ} = 0.

Then A is said to be a strong random operator. We let LSH(Ω) denote the set of strong

random operators. Two strong random operators A and B are considered to be identical if

P{Ax = Bx} = 1 for all x ∈ H.

For A ∈ LSH(Ω), 〈Ax, y〉 defines a real-valued random variable. If A satisfies

(W1) for all x1, x2, y1, y2 ∈ H and a1, a2, b1, b2 ∈ R

P

{
〈A(a1x1 + a2x2), b1y1 + b2y2〉 =

2∑
j,k=1

ajbk〈Axj, yk〉

}
= 1
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(W2) 〈Ax, y〉 is continuous in (x, y): for all (x, y) ∈ H ⊗H and δ > 0,

lim
(xj ,yj)→(x,y)

P {|〈Axj, yj〉 − 〈Ax, y〉| > δ} = 0,

then A is said to be a weak random operator. We let LWH (Ω) denote the set of weak random

operators. Two weak random operators A and B are considered to be identical if P{〈Ax, y〉 =

〈Bx, y〉} = 1 for all x, y ∈ H.

We let LH(Ω) be the set of mappings A from Ω to LH, such that 〈Ax, y〉 is Borel mea-

surable for all x, y ∈ H. Such a map A is called a random bounded linear operator. From

the definitions, the following inclusions are easily established.

LWH (Ω) ⊃ LSH(Ω) ⊃ LH(Ω) (A.1)

In this paper, we mainly use four modes of convergence of random linear operators. Let

{Aj}j∈N be a sequence of random linear operators. Then we say Aj converges in norm to

A0, and write Aj →LH A0, if

‖Aj − A0‖LH →p 0.

Aj is said to be strongly converge to A0, and write Aj →s A0, if for all x ∈ H and δ > 0,

lim
j→∞

P {‖Ajx− A0x‖ > δ} = 0,

while it is said to be weakly converge to A0, and write Aj →w A0, if for all x, y ∈ H and

δ > 0,

lim
j→∞

P {|〈Ajx, y〉 − 〈A0x, y〉| > δ} = 0,

Moreover, we say Aj weakly converges in distribution to A0, and write Aj →wd A0, if, all

any k, x1, . . . , xk, y1, . . . , yk ∈ H,

lim
j→∞

Ef (〈Ajx1, y1〉, . . . , 〈Ajxk, yk〉) = Ef (〈A0x1, y1〉, . . . , 〈A0xk, yk〉)

for any bounded continuous function f on Hk. It is easy to show that weak (resp. strong)

convergence implies weak convergence in distribution. Due to the inclusions given in (A.1),

the above modes of convergence are all relevant to random bounded linear operators. More-

over, it is deduced that the convergence in norm implies any of strong or weak modes of

convergence.
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A.2 Characteristic functionals of weak random operators

If A ∈ LWH (Ω), then 〈A(x1 ⊗ y1)x2, y2〉 = 〈x1, x2〉〈Ay1, y2〉 is defined for all x1, x2, y1, y2 ∈ H.

Moreover, the trace of A(x⊗ y), denoted by tr(A(x⊗ y)), is given by

tr(A(x⊗ y)) =
∞∑
j=1

〈A(x⊗ y)ej, ej〉 = 〈Ay, x〉,

where {ej}j∈N is an orthonormal basis of H. Let L0
H(Ω) be the set of all operators Υ of the

form

Υ =
k∑
j=1

xj ⊗ yj, xj, yj ∈ H, j = 1, . . . , k, k = 1, 2, . . .

For any Υ ∈ L0
H(Ω), it is trivial to show that tr(AΥ) is well defined. A functional ΨA :

L0
H(Ω)→ C defined by

ΨA(Υ) = E exp (i tr(AΥ))

is called the characteristic functional of A. More detailed mathematical properties of ΨA(Υ)

can be found in Skorohod (1983).

A.3 Useful Results on Convergence of Random Linear Operators

In this section, we state several lemmas that are useful in our asymptotic analysis. The

following Lemmas A.1-A.3 can be found in or deduced from Chapter 3.3 of Skorohod (1983).

Lemma A.1. For {Aj}j∈N ⊂ LWH (Ω), Aj →wd A0 if and only if

lim
j→∞

ΨAj
(Υ) = ΨA0(Υ)

for all Υ ∈ L0
H(Ω).

Lemma A.2 (Cramer-Wold device). For {Aj}j∈N ⊂ LWH (Ω), Aj →wd A0 if and only if

k∑
j=1

〈Ayj, xj〉 →d

k∑
j=1

〈A0yj, xj〉

for any k, x1, . . . , xk, y1, . . . , yk ∈ H.

Lemma A.3. Let {Aj}j∈N be a sequence of random operators and {ΨAj
}j∈N be their char-

acteristic functionals. If the limit

lim
j→∞

ΨAj
(Υ) = ΨA0(Υ) for all Υ ∈ L0

H(Ω)
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exists and the functional ΨA0(α(x⊗y)) is continuous in α, then one can construct a sequence

of random operators {Ãj}j∈N and Ã0 such that

ΨÃj
(·) = ΨAj

(·), ΨÃ0
(·) = ΨA0(·), Aj →w Ã0.

Let {Aj}j∈N be a sequence of weak random operators. Then we say that it satisfies

stochastic strong boundedness (on the unit sphere) if

sup
j

sup
‖x‖≤1

P {‖Ajx‖ > α} →p 0 and sup
j

sup
‖x‖≤1

P
{
‖A∗jx‖ > α

}
→p 0 as α→∞. (A.2)

The following lemma shows that a sequence that weakly converges in distribution to another

weak random operator satisfies (A.2).

Lemma A.4. Suppose that {Aj}j∈N ⊂ LWH (Ω) and Aj →wd A0 ∈ LWH (Ω). Then it satisfies

stochastic strong boundedness on the unit sphere.

Proof. If Aj →wd A0, then it can be verified (see Ch1, proof of Theorem 3 in Skorohod

(1983)) that

sup
j

sup
‖x‖≤1,‖y‖≤1

P {|〈Ajx, y〉| > α} →p 0, as α→∞ (A.3)

For some x ∈ H with ‖x‖ ≤ 1, if we set

y = Ajx/‖Ajx‖ if Ajx 6= 0,

y = 0 if Ajx = 0,

then the first convergence of (A.2) is deduced.

Moreover, (A.3) may be equivalently written as

sup
j

sup
‖x‖≤1,‖y‖≤1

P
{
|〈x,A∗jy〉| > α

}
→ 0, as α→∞ (A.4)

For some y ∈ H with ‖y‖ ≤ 1, if we set

x = A∗jy/‖A∗jy‖ if A∗jy 6= 0,

x = 0 if A∗jy = 0,

then the second convergence of (A.2) is deduced.

We collect several useful results on convergent random operators.

Lemma A.5. For {Aj}j∈N ⊂ LWH (Ω), the following hold.

(i) If Aj(ω)→wd A for some nonrandom operator A, then Aj(ω)→w A.
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(ii) If Aj(ω)→w Bj(ω) and Aj(ω)→wd A0(ω), then Bj(ω)→wd A0(ω).

(iii) If Aj →w A0 and Bj →s or LH B0, then AjBj →w A0B0. If Bj is self-adjoint, then

BjAj →w B0A0

Proof. (i) and (ii) can be trivially established from the definitions of the modes of conver-

gence. We therefore only prove (iii).

For all x ∈ H

AjBjx− A0B0x = Aj(Bj −B0)x+ (Aj − A0)B0x

Then we may easily obtain the following: for all x, y ∈ H

〈Aj(Bj −B0)x, y〉 ≤ ‖A∗jy‖‖(Bj −B0)x‖ (A.5)

〈(Aj − A0)B0x, y〉 →p 0. (A.6)

where (A.6) holds since Aj →w A0. Moreover, it can be shown that the right hand side of

(A.5) converges in probability to zero due to Bj →s or LH B0 and ‖A∗jy‖ = Op(1), implied

by stochastic strong boundedness of weakly convergent sequence of operators (see Lemma

A.4).

Now suppose that Bj is self-adjoint for all j. Since 〈Bjx, y〉 = 〈x,Bjy〉 for all x, y ∈ H,

self-adjointness of B0 is easily established. Note that for all x, y ∈ H,

〈BjAjx, y〉 = 〈Ajx, (Bj −B0)y〉+ 〈Ajx,B0y〉.

Then it can be shown that

〈Ajx, (Bj −B0)y〉 ≤ ‖Ajx‖‖(Bj −B0)y‖ →p 0 (A.7)

〈Ajx,B0y〉 →p 〈A0x,B0y〉 = 〈B0A0x, y〉 (A.8)

where (A.7) holds since Bj →s or LH B0 and ‖Ajx‖ = Op(1) (see Lemma A.4) and (A.8)

is deduced from Aj →w A0. We therefore conclude that 〈BjAjx, y〉 →p 〈B0A0x, y〉 for all

x, y ∈ H.

B Mathematical Proofs

B.1 Preliminary Lemmas

We first establish several lemmas that will be used in the subsequent discussions.

Lemma B.1. Under Assumptions M and K, the following hold.
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(i) P CΛTP
C →LH P CΛνP

C.

(ii) P CΛ̃TP
C →LH P CΛνP

C.

Proof. To show (i), we note that P CΛTP
C is the long-run covariance of the stationary com-

ponent {P Cνt}t≥1. Under Assumptions M and K, we apply Theorem 2 of Horváth et al.

(2013) to obtain (i).12 (ii) can be similarly shown by applying Theorem 5.3 of Kokoszka and

Young (2016).

Given the direct sum decomposition H = A⊕C implied by Assumption M, we may view

KT and ΛT as the following operator matrices.

KT =

(
PAKTPA PAKTP C

P CKTPA P CKTP C

)
, ΛT =

(
PAΛTP

A PAΛTP
C

P CΛTP
A P CΛTP

C

)
(B.1)

The following lemma establishes the weak limits in distribution and stochastic orders of the

operators in (B.1).

Lemma B.2. Under Assumptions M and K, we have(
T−2PAKTPA T−1PAKTP C

T−1P CKTPA P CKTP C

)
→wd

(
K11 K12

K21 K22

)
=: K,(

(mT )−1PAΛTP
A (mT )−1/2PAΛTP

C

(mT )−1/2P CΛTP
A P CΛTP

C

)
→wd

(
Λ11 0

0 Λ22

)
=: Λ,

where

K11 = PAΛ
1/2
∆XP

ASV,V PAΛ
1/2
∆XP

A, K12 = PAΛ
1/2
∆XP

ASV,BP CΛ1/2
ν P C,

K21 = P CΛ
1/2
ν P CSB,V PAΛ

1/2
∆XP

A, K22 = P CΛ1/2
ν P CSB,BP CΛ1/2

ν P C,

Λ11 = ckP
AΛ

1/2
∆XP

ASW,WP
AΛ

1/2
∆XP

A, Λ22 = P CΛνP
C.

Proof.

(i) Limit of T−2PAKTPA : First, we may apply standard asymptotic results for the real-

valued sequence {〈Yt, PAx〉}Tt=1 for any x ∈ H as follows.

T−3/2〈Yt, PAx〉 =
1

T

t∑
s=1

〈
Xs − X̄T , P

Ax
〉

√
T

→d sx

∫ r

0

W x(τ)dτ, (B.2)

12The summability condition
∑∞

j=1 j‖Φ̃j‖LH < ∞ establishes that {PCνt}t≥1 is L4-m-approximable

(Proposition 2.1 of Hörmann and Kokoszka (2010)) and M
∑∞

j=M+1 ‖Φ̃j‖LH → 0. With these proper-
ties, it is easy to show that all the requirements of Theorem 2 in Horváth et al. (2013) are satisfied for
{PCνt}t≥1.
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where W x(τ) = Wx(r)−
∫
Wx(τ)dτ and (Wx(r), r ∈ [0, 1]) is the standard Brownian motion

taking values in R, and

s2
x =

∞∑
j=−∞

E〈∆Xt, P
Ax〉〈∆Xt−j, P

Ax〉 = 〈x, PAΛ∆XP
Ax〉.

Since (PAΛ
1/2
∆XP

AW (r), r ∈ [0, 1]) is Brownian motion taking values in H and its covariance

operator is given by PAΛ∆XP
A, (B.2) may be written as

T−3/2〈PAYt, x〉 →d

〈
PAΛ

1/2
∆XP

AV (r), x
〉

(B.3)

Then from a standard continuous mapping theorem, it is deduced that

〈T−2PAKTPAx, y〉 =
1

T 4

T∑
t=1

〈Yt, PAx〉〈Yt, PAy〉

→d

〈
y, PAΛ

1/2
∆XP

A

(∫
V (r)⊗ V (r)dr

)
PAΛ

1/2
∆XP

Ax

〉
(B.4)

for all x, y ∈ H. From (B.4) and the Cramer-Wold device (Lemma A.2), we may deduce

that

T−2PAKTPA →wd PAΛ
1/2
∆XP

A

(∫
V (r)⊗ V (r)dr

)
PAΛ

1/2
∆XP

A

(ii) Limit of P CKTP C : For any arbitrary x ∈ H,

T−1/2〈Yt, P Cx〉 =
1√
T

T∑
t=1

〈
νt − ν̄t, P Cx

〉
→d sxBx(r), (B.5)

where (Bx(r), r ∈ [0, 1]) is the standard Brownian bridge taking values in R and

s2
x =

∞∑
j=−∞

E〈νt, P Cx〉〈νt−j, P Cx〉 = 〈x, P CΛνP
Cx〉. (B.6)

The above results (B.5) and (B.6) are quite well known for scalar-valued time series, see e.g.

Kwiatkowski et al. (1992). As in (B.3), (B.5) may be written as

1√
T
〈Yt, P Cx〉 →d 〈P CΛ1/2

ν P CB(r), x〉.
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Then from the continuous mapping theorem, it is deduced that

〈P CKTP Cx, y〉 =
1

T 2

T∑
t=1

〈Yt, P Cx〉〈Yt, P Cy〉

→d

〈
y, P CΛ1/2

ν P C

(∫
B(r)⊗B(r)dr

)
P CΛ1/2

ν P Cx

〉
. (B.7)

Using (B.7) and the Cramer-Wold device (Lemma A.2), we obtain the following.

P CKTP C →wd P CΛ1/2
ν P C

(∫
B(r)⊗B(r)dr

)
P CΛ1/2

ν P C

(iii) Limit of T−1P CKTPA and T−1PAKTP C : From (i) and (ii), the following can be

easily established: for any x, y ∈ H,

T−1〈P CKTPAx, y〉 =
1

T

T∑
t=1

〈Yt, PAx〉
T

〈Yt, P Cy〉√
T

→d

〈
y, P CΛ1/2

ν P C

(∫
V (r)⊗B(r)dr

)
PAΛ

1/2
∆XP

Ax

〉
Similarly,

T−1〈PAKTP Cx, y〉 →d

〈
y, PAΛ

1/2
∆XP

A

(∫
B(r)⊗ V (r)dr

)
P CΛ1/2

ν P Cx

〉
Using the Cramer-Wold device (Lemma A.2), the desired results are easily obtained.

(iv) Limit of (mT )−1PAΛTP
A : In our proof of (i), we already established that

T−1/2
〈
Xt − X̄T , PAx

〉
→d

〈
PAΛ

1/2
∆XPAW (r), x

〉
From the Skorohod’s representation and some algebra, we may deduce the following (see e.g.

Phillips (1988)).∣∣∣∣∣ 1

T 2

T∑
t=s+1

〈Xt − X̄T , PAx〉〈Xt − X̄T , PAy〉 −
∫
〈W̃ (r), PAx〉〈W̃ (r), PAy〉dr

∣∣∣∣∣ = op(1)

where the second term satisfies∫
〈W̃ (r), PAx〉〈W̃ (r), PAy〉 =d

∫
〈W (r), PAx〉〈W (r), PAy〉dr.

Then the desired result can be deduced as in our previous proofs.
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(v) Limit of (mT )−1/2P CΛTP
A and (mT )−1/2PAΛTP

C : For convenience we assume k(·) =

1 on [0, c], which is just to simplify the expressions below. Note that

T−1

m∑
s=0

T∑
t=s+1

〈Xt−s − X̄T , P
Cx〉〈Xt − X̄T , P

Ay〉

≤ max
1≤t≤T

{∣∣∣∣∣
〈
Xt − X̄T , P

Ay
〉

√
T

∣∣∣∣∣
}(

1√
T

∣∣∣∣∣
m∑
s=0

T∑
t=s+1

〈Xt−s − X̄T , P
Cx〉

∣∣∣∣∣
)

(B.8)

Then clearly the right hand side of (B.8) is Op(m) (see also proof of Theorem B.4 of Nyblom

and Harvey (2000)). From this results, we may easily deduce the desired results.

(vi) Limit of P CΛTP
C : The desired result is implied by Lemma B.1.

We introduce another useful convergence result, which can be deduced from Theorem 4.2

of Chang et al. (2016).

Lemma B.3. Under Assumption M(i)-(iii), we have(
T−1PACT (0)PA T−1/2PACT (0)P C

T−1/2P CCT (0)PA P CCT (0)P C

)
→wd

(
C11 0

0 C22

)
=: C,

where

C11 = PAΛ
1/2
∆XP

ASW,WP
AΛ

1/2
∆XP

A, C22 = P CCν0P
C.

B.2 Proofs of the main results

We provide proofs of the results provided in Section 3. Throughout this section, we fix

ϕ0 and write all the mathematical objects of the form f(ϕ0) simply as f , e.g. ` = `(ϕ0),

Π`
T = Π`

T (ϕ0), S̃B,B = S̃B,B(ϕ0), etc. It may not cause any confusion and makes us simplify

mathematical expressions.

We first note that Π`
TΛTΠ`

T and Π`
TKTΠ`

T are not invertible in our infinite-dimensional

setting, but their `−regularized inverses are well defined. Therefore, we may obtain the

following reformulations of (3.8).

λj,Tφj,T =
(
Π`
TΛTΠ`

T

)†
`
Π`
TKTΠ`

Tφj,T , φj,T ∈ ran Π`
T (B.9)

γj,Tψj,T =
(
Π`
TKTΠ`

T

)†
`
Π`
TΛTΠ`

Tψj,T , γj,T = λ−1
j,T , ψj,T ∈ ran Π`

T (B.10)

It is also noteworthy that H allows the following direct sum decomposition which are
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repeatedly used in this section.

H = (ran ΠA
T ∩H`

T )⊕ ((ran ΠA
T )⊥ ∩H`

T )⊕ (H`
T )⊥, (B.11)

H = (ran ΠA ∩H`)⊕ ((ran ΠA)⊥ ∩H`)⊕ (H`)⊥, (B.12)

Proof of Proposition 3.1

For convenience, we first show (ii).

Proof of (ii) : To show (ii), we assume that ` > ϕ and reformulate (B.10) as follows.

γj,Tψj,T = RTψj,T , ψj,T ∈ H`
T (B.13)

RT =
(
D2
TΠ`

TKTΠ`
TD

2
T

)†
`
D2
TΠ`

TΛTΠ`
TD

2
T ,

DT =

T−1/2I1 0 0

0 I2 0

0 0 I3


γj,T = λ−1

j,T , γ1,T ≤ · · · ≤ γ`,T .

where I1, I2 and I3 are properly defined identity maps according to the decomposition (B.11).

Given the decomposition as in (B.11), the operator Π`
TKTΠ`

T may be viewed as the

following operator matrix.

Π`
TKTΠ`

T =

ΠA
TKTΠA

T ΠA
TKTΠC

T 0

ΠC
TKTΠA

T ΠC
TKTΠC

T 0

0 0 0

 (B.14)

Then we have

D2
TΠ`

TKTΠ`
TD

2
T =

T−2ΠA
TKTΠA

T T−1ΠA
TKTΠC

T 0

T−1ΠC
TKTΠA

T ΠC
TKTΠC

T 0

0 0 0

 (B.15)

Since Π`
T →LH Π`, we may easily deduce that ΠA

T →LH ΠA and ΠC
T →LH ΠC. Then from

Lemmas A.5 and B.2, we may deduce that the operators in (B.14) satisfy

T−2ΠA
TKTΠA

T →wd ΠAΛ
1/2
∆XΠASV,V ΠAΛ

1/2
∆XΠA =: K̃11 (B.16)

T−1ΠA
TKTΠC

T →wd ΠAΛ
1/2
∆XΠASB,V ΠCΛ1/2

ν ΠC =: K̃12 (B.17)

T−1ΠC
TKTΠA

T →wd ΠCΛ1/2
ν ΠCSV,BΠAΛ

1/2
∆XΠA =: K̃21 (B.18)

ΠC
TKTΠC

T →wd ΠCΛ1/2
ν ΠCSB,BΠCΛ1/2

ν ΠC =: K̃22 (B.19)
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Since Π`
T satisfies Assumption P for ` > ϕ, we have rank(K̃11) = rank(K̃12) = ϕ and

rank(K̃21) = rank(K̃22) = `− ϕ almost surely. We let

K̃ =

K̃11 K̃12 0

K̃21 K̃22 0

0 0 0

 (B.20)

denote the limiting operator of (B.15) based on the direct sum decomposition (B.12). It

is easy to verify that ΨK̃(αx ⊗ y) is continuous in α from continuity of K̃, then Lemma

A.3 implies that we can assume D2
TΠ`

TKTΠ`
TD

2
T →w K̃� for some K̃� =wd K̃. Based on

Assumption P, let (e1, . . . , e`) (resp. (e1,T , . . . , e`,T )) be an orthonormal basis of Π` (resp.

Π`
T ). Note that (D2

TΠ`
TKTΠ`

TD
2
T − K̃�)x = 0 if x ∈ span{e1, . . . , e`, e1,T , . . . , e`,T}⊥. From

this result, we may deduce that there exist some orthonormal set (ẽ1,T , . . . , ẽ`,T ), which

consists of at most ` vectors, satisfying ẽj,T ∈ [ran Π`]
⊥ for all j = 1, . . . , `, and

‖D2
TΠ`

TKTΠ`
TD

2
T − K̃�‖LH ≤

∑̀
j=1

|〈(D2
TΠ`

TKTΠ`
TD

2
T − K̃�)ej, ej〉|

+
∑̀
j=1

|〈(D2
TΠ`

TKTΠ`
TD

2
T − K̃�)ẽj,T , ẽj,T 〉|, (B.21)

where the inequality is established from the fact that the operator norm of D2
TΠ`

TKTΠ`
TD

2
T −

K̃� is bounded above by its trace norm (see equation (1.55) in Bosq (2000)). The first term on

the right hand side of (B.21) clearly converges to zero since 〈(D2
TΠ`

TKTΠ`
TD

2
T −K̃�)ej, ej〉 →p

0 for j = 1, . . . , `. Since (I − Π`)ẽj,T = ẽj,T and ‖ẽj,T‖ = 1 regardless of T , we may deduce

the following from the Cauchy-Schwartz inequality and properties of (operator) norm.

|〈(D2
TΠ`

TKTΠ`
TD

2
T − K̃�)ẽj,T , ẽj,T 〉| = |〈(I − Π`)D2

TΠ`
TKTΠ`

TD
2
T ẽj,T , ẽj,T 〉|

≤ ‖(I − Π`)Π`
T‖LH‖D2

TΠ`
TKTΠ`

TD
2
T ẽj,T‖ (B.22)

The right hand side of (B.22) converges in probability to zero since ‖D2
TΠ`

TKTΠ`
TD

2
T ẽj,T‖

is Op(1) by the stochastic strong boundedness on the unit sphere (Lemma A.4) and ‖(I −
Π`)Π`

T‖LH →p 0 by Assumption P. This implies that the second term on the right hand side

of (B.21) converges in probability to zero. We therefore conclude that

D2
TΠ`

TKTΠ`
TD

2
T →LH K̃� (B.23)

For some orthonormal basis (uj,T , j = 1, . . . , `) of H`
T and (uj, j = 1, . . . , `) of H`, we have
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the following spectral representations of D2
TΠ`

TKTΠ`
TD

2
T and K̃�.

D2
TΠ`

TKTΠ`
TD

2
T =

∑̀
j=1

ηj,Tuj,T ⊗ uj,T , K̃� =
∑̀
j=1

ηjuj ⊗ uj,

Then from (B.23) and Lemma 4.2 of Bosq (2000), we may easily deduce that

sup
1≤j≤`

|ηj,T − ηj| → 0 (B.24)

We note that ηj > 0 and the associated eigenspace is one-dimensional for each j = 1, . . . , `

almost surely. Then it is deduced from Lemma 4.3 of Bosq (2000) that the eigenvectors

satisfy

‖uj,T − sgn(〈uj,T , uj〉)uj‖ →p 0, for j = 1, . . . , ` (B.25)

Note that we have

‖K̃†�x− (D2
TΠ`

TKTΠ`
TD

2
T )†`x‖ ≤

∥∥∥∥∥∑̀
j=1

(η−1
j − η−1

j,T )〈uj, x〉uj

∥∥∥∥∥+

∥∥∥∥∥∑̀
j=1

η−1
j,T 〈uj, x〉(uj − uj,T )

∥∥∥∥∥
+

∥∥∥∥∥∑̀
j=1

η−1
j,T (〈uj, x〉 − 〈uj,T , x〉)uj,T

∥∥∥∥∥ (B.26)

Then it follows straightforwardly from (B.24) and (B.25) that the right hand side of (B.26)

converge in probability to zero, meaning that(
D2
TΠ`

TKTΠ`
TD

2
T

)†
`
→s K̃†� (B.27)

It is worth noting that K̃� is almost surely invertible on H`, and zero on (H`)⊥. From the

Schur’s formula of the inverse of the partitioned operator matrix (e.g. Bart et al. (2007, p.

29)), we may easily show that K̃†� is given by

K̃†� =wd

ΠAA11ΠA ΠAA12ΠC 0

ΠCA21ΠA ΠCA22ΠC 0

0 0 0

 ,

where

A11 = K̃†11 + K̃†11K̃12A22K̃21K̃†11, A12 = −K̃†11K̃12A22,

A21 = −A22K̃21K̃†11, A22 =
(
K̃22 − K̃21K̃†11K̃12

)†
.
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Similarly, the operator Π`
TΛTΠ`

T may be viewed as the following operator matrix.

Π`
TΛTΠ`

T =

ΠA
TΛTΠA

T ΠA
TΛTΠC

T 0

ΠC
TΛTΠA

T ΠC
TΛTΠC

T 0

0 0 0


From Lemma B.2, it is easy to verify that

D2
TΠ`

TΛTΠ`
TD

2
T →w Λ̃ =

0 0 0

0 ΠCΛνΠ
C 0

0 0 0

 (B.28)

From (B.27), (B.28) and Lemma A.5(iii), we conclude that

RT →w K̃†�Λ̃ = R =wd

0 0 0

0 ΠCA22ΠCΛνΠ
C 0

0 0 0


Moreover from similar arguments between equations (B.20) and (B.23), we obtain

RT →LH R (B.29)

We also consider the spectral representations of RT and R as follows: for some orthonormal

bases (vj,T , j = 1, . . . , `) and (wj,T , j = 1, . . . , `) of H`
T , and (vj, j = 1, . . . , `) and (wj, j =

1, . . . , `) of H`

RT =
∑̀
j=1

τj,Tvj,T ⊗ wj,T , R =
∑̀
j=1

τjvj ⊗ wj,

Then from (B.29) and Lemma 4.2 in Bosq (2000), we have

sup
1≤j≤`

|τj,T − τj| →p 0

The result implies that the eigenvalues of RT converges in probability to those of R. Since

R(H` ∩ A) = {0} and dim(H` ∩ A) = ϕ, (γ1,T , . . . , γϕ,T ) satisfying (B.13) converge in

probability to zeroes. Moreover, (γϕ+1,T , . . . , γ`,T ) converge in distribution to eigenvalues

of ΠCA22ΠCΛνΠ
C. Therefore we have

γj,T →d λj−ϕ

(
ΠC
(
K̃22 − K̃21K̃†11K̃12

)†
ΠCΛνΠ

C

)
, j = ϕ+ 1, . . . , ` (B.30)
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We note that the following holds.13

K̃†11 =
(

ΠAΛ
1/2
∆XΠA

)†
S̃†V V

(
ΠAΛ

1/2
∆XΠA

)†
(B.31)

This implies that

K̃22 − K̃21K̃†11K̃12 = ΠCΛ1/2
ν ΠC

(
S̃BB − S̃BV S̃†V V S̃V B

)
ΠCΛ1/2

ν ΠC,

and therefore(
K̃22 − K̃21K̃†11K̃12

)†
=
(

ΠCΛ1/2
ν ΠC

)† (
S̃BB − S̃BV S̃†V V S̃V B

)† (
ΠCΛ1/2

ν ΠC
)†
. (B.32)

Then (B.30), (B.32) and the properties of an eigenvalue, we have

λj

(
ΠC
(
K̃22 − K̃21K̃†11K̃12

)†
ΠCΛνΠ

C

)
=d λj−ϕ

((
S̃BB − S̃BV S̃†V V S̃V B

)†)
, (B.33)

for j = ϕ+ 1, . . . , `. Then (ii) follows from (B.30) and (B.33).

Proof of (i) : First, we only consider the case when ` > ϕ. (B.9) can be reformulated as

follows.

λj,Tψj,T = RTψj,T , ψj,T ∈ H`
T (B.34)

RT =
(
DmTΠ`

TΛTΠ`
TDmT

)†
`
DmTΠ`

TKTΠ`
TDmT ,

DmT =

(mT )−1/2I1 0 0

0 I2 0

0 0 I3

 ,

γj,T = λ−1
j,T , γ1,T ≤ · · · ≤ γ`,T ,

where I1, I2 and I3 are properly defined identity maps according to the decomposition (B.11).

Then clearly

m

T
DmTΠ`

TKTΠ`
TDmT =

 T−2ΠA
TKTΠA

T

(
m
T

)1/2
T−1ΠA

TKTΠC
T 0(

m
T

)1/2
T−1ΠC

TKTΠA
T

(
m
T

)
ΠC
TKTΠC

T 0

0 0 0

 ,

Since ‖Π`
T −Π`‖LH →p 0, clearly ‖ΠA

T −ΠA‖LH →p 0 and ‖ΠC
T −ΠC‖LH →p 0. Then we may

13In general, (UV U)† 6= U†V †U† for U, V ∈ LH. If ranU = ranV = (kerU)⊥ = (kerV )⊥, then it can be
shown that (UV U)† = U†V †U†.
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deduce from Lemmas A.3, A.5, and B.2 that

m

T
DmTΠ`

TKTΠ`
TDmT →w K̃ =wd

K̃11 0 0

0 0 0

0 0 0

 ,

where K̃11 is given in (B.16). Note that we have dim(H` ∩ A) = ϕ, rank(K̃11) = ϕ almost

surely due to that Λ
1/2
∆X is bijective as an operator acting on A. Moreover from Lemmas A.3,

A.5, and B.2, we also have

DmTΠ`
TΛTΠ`

TDmT →w Λ̃ =wd

Λ̃11 0 0

0 Λ̃22 0

0 0 0

 , (B.35)

where

Λ̃11 = ckΠAΛ
1/2
∆XΠASW,WΠAΛ

1/2
∆XΠA, Λ̃22 = ΠCΛνΠ

C (B.36)

From similar arguments between equations (B.20) and (B.27),14 we may easily obtain

(
DmTΠ`

TΛTΠ`
TDmT

)†
`
→s Λ̃†� =wd

Λ̃†11 0 0

0 Λ̃†22 0

0 0 0


We therefore conclude from Lemma A.2(iii) that

m

T
RT →w R = Λ̃†�K̃ =wd

Λ̃†11K̃11 0 0

0 0 0

0 0 0


Again, from similar arguments to derive (B.23), we have (m/T )RT →LH R, so the eigenval-

ues of (m/T )RT converges to those of R. This implies that the last `−ϕ eigenvalues of RT

converge to zeroes, and

(m/T )λj,T →d λj

(
Λ̃†11K̃11

)
.

Then it is easy to show the following from the properties of an eigenvalue.

λj

(
Λ̃†11K̃11

)
=d c

−1
k · λj

(
S̃†
W,W
S̃V V

)
. (B.37)

14Note that we need convergence of eigenelements of DmT Π`
T ΛT Π`

TDmT to those of Λ̃� to establish this

result. Since an eigenvalue of Λ̃22 could allow multiple eigenvectors, the only difference is that we need to
refer to Lemma 4.4 of Bosq (2000) instead of Lemma 4.3.
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Then (ii) follows from (B.37).

For the case when ` ≤ ϕ, Λ̃22 in the right hand sides of (B.35) is understood as 0, and

rank(K̃11) = rank(Λ̃11) = ` since rank ΠA = `. The rest of the proof is trivial, so omitted to

save the space.

Proof of Corollary 3.1

(i) is a direct consequence of Proposition 3.1. Moreover, we may easily deduce the following

from Proposition 3.1.

λ−1
j,T = Op(m/T ) for j = 1, . . . , `, if ϕ0 < ϕ and ` ≤ ϕ,

λ−1
j,T = Op(m/T ) for j = ϕ+ 1, . . . , `, if ϕ0 < ϕ and ` > ϕ.

Thus, if ϕ0 < ϕ, at least one summand of the suggested statistic diverges to infinity. This

proves (ii). (iii) follows from (i) and (ii).

Proof of Corollary 3.2

(i) is a direct consequence of Proposition 3.1. Moreover, the proposition implies that

(m/T )λj,T = op(1) for j = ϕ+ 1, . . . , `, if ϕ < ϕ0 ≤ ϕmax.

Therefore at least one summand of the suggested statistic diverges to infinity, which proves

(ii). (iii) follows from (i) and (ii).

Proof of Proposition 3.2

The proof only requires a slight and obvious modification from those of Lemma B.2 and

Proposition 3.1, hence is omitted.

Proof of Proposition 3.3

Proof of (i) : We may replace ΛT with CT (0) and m/T with 1/T in our proof of Proposition

3.1-(i). Using the result in Lemma B.3, we replace (B.35) and (B.36) with

DTΠ`
TCT (0)Π`

TDT →w C̃ =wd

C̃11 0 0

0 C̃22 0

0 0 0


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and

C̃11 = ΠAΛ
1/2
∆XΠASW,WΠAΛ

1/2
∆XΠA, C̃22 = ΠCCν0Π

C.

From nearly identical arguments used in proof of Proposition 3.1(i), we can show that the

eigenvalues of T−1RT := T−1(DTΠ`
TCT (0)Π`

TDT )†`DTΠ`
TKTΠ`

TDT converge to those of C̃†K̃,

which implies that

(1/T )λj,T →d λj

(
S̃†
W,W
S̃V V

)
, j = 1, . . . ,min{ϕ, `},

(1/T )λj,T →p 0, j = min{ϕ, `}+ 1, . . . , `.

Then the desired results can be deduced from the above properties of the eigenvalues as in

Corollary 3.2.

Proof of (ii) : Similarly we replace ΛT with CT (0) in our proof of Proposition 3.1(ii) and

we use the convergence result given in Lemma B.3. As a result, (B.28) is replaced with

D2
TΠ`

TCT (0)Π`
TD

2
T →w C̃ =

0 0 0

0 ΠCCν0Π
C 0

0 0 0

 (B.38)

From nearly identical arguments used in proof of Proposition 3.1(ii), it can be shown that

γj,T →d λj

(
ΠC
(
K̃22 − K̃21K̃†11K̃12

)†
ΠCCνΠ

C

)
If E[νt−s ⊗ νt] = E[νt ⊗ νt−s] = 0 for s 6= 0, then Cν0 = Λν . We then obtain the same limit

given in Proposition 3.1(ii).

Proof of Corollaries 3.4 and 3.3

The proof of Corollary 3.4 (resp. Corollary 3.3) is nearly identical to that of Corollary 3.2

(resp. Corollary 3.1), but using Proposition 3.3 instead of Proposition 3.1.
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Proof of Proposition 3.4

Proof of (i) : We first assume that ` > ϕ and reformulate (3.20) as follows.

λj,Tψj,T = RTψj,T , ψj,T ∈ Hϕ
T (B.39)

RT =
(
DmTΠ`

TΛ∆X,TΠ`
TDmT

)†
`
DmTΠ`

TCT (0)Π`
TDmT ,

Dm =

m−1I1 0 0

0 I2 0

0 0 I3

 ,

where I1, I2 and I3 are properly defined identity maps according to the decomposition (B.11).

We have

m2

T
DmΠ`

TCT (0)Π`
TDm =


T−1ΠA

TCT (0)ΠA
T

(
m
T

)
ΠA
TCT (0)ΠC

T 0(
m
T

)
ΠC
TCT (0)ΠA

T

(
m2

T

)
ΠC
TCT (0)ΠC

T 0

0 0 0

 .

m2DmΠ`
TΛ∆X,TΠ`

TDm =

 ΠA
TΛ∆X,TΠA

T mΠA
TΛ∆X,TΠC

T 0

mΠC
TΛ∆X,TΠA

T m2ΠC
TΛ∆X,TΠC

T 0

0 0 0

 .

From similar arguments that used to show D2
TΠ`

TKTΠ`
TD

2
T →w K̃� in our proof of Proposition

3.1, it can be shown that

m2

T
DmTΠ`

TCT (0)Π`
TDmT →w C̃ =wd

C̃11 0 0

0 0 0

0 0 0

 , (B.40)

where C̃11 = ΠAΛ
1/2
∆XΠASW,WΠAΛ

1/2
∆XΠA. Moreover from Lemma 8.1 of Phillips (1995), The-

orem 3.1 of Shintani (2001), and Lemma A.5(i), we may deduce that

m2DmΠ`
TΛ∆X,TΠ`

TDm →w Λ̃∆X =

Λ̃∆X,11 0 0

0 Λ̃∆X,22 0

0 0 0

 , (B.41)

where

Λ̃∆X,11 = ΠAΛ
1/2
∆XΠA, Λ̃∆X,22 = −k

′′
(0)ΠCΛνΠ

C
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Since ` > ϕ, Λ̃∆X,22 6= 0 and rank(C̃11) = rank(Λ̃∆X,11) = ϕ. From similar arguments

between equations (B.20) and (B.27), we also obtain(
m2DmΠ`

TΛ∆X,TΠ`
TDm

)†
`
→s Λ̃†∆X .

Then we may deduce that the eigenvalues of T−1RT converges to those of Λ̃†∆X C̃11; that is,

the first ϕ eigenvalues converge to those of S̃W,W .

If ` ≤ ϕ, we have Λ̃∆X,22 = 0 and rank(C̃11) = rank(Λ̃∆X,11) = ` in (B.40) and (B.41).

The rest of the proof is similar, and we conclude that all the eigenvalues of T−1RT converges

to those of S̃W,W .

Proof of (ii) : Given the expressions in (B.40) and (B.41), it can be easily shown that

T−1λj,T →p 0, j ≥ ϕ+ 1.

Proof of Corollary 3.5

(i), (ii) and (iii) may be deduced from Proposition 3.4, so we omit the detailed proof.

Proof of Proposition 3.5

For convenience we assume k(·) = 1 on [0, c], which just to simplify the expressions below.

Our proof may be easily generalized to a general kernel function k(·) with a trivial modi-

fication. From the Cauchy-Schwarz inequality and the properties of norm, we may easily

deduce that

‖(mT )−1ΛT − (mT )−1PAΛTP
A‖LH

≤ 1

mT 2

m∑
s=0

T∑
t=1

‖PA(Xt−s − X̄T )‖‖P C(Xt − X̄T )‖

+
1

mT 2

m∑
s=0

T∑
t=1

‖P C(Xt−s − X̄T )‖‖PA(Xt − X̄T )‖

+
1

mT 2

m∑
s=0

T∑
t=1

‖P C(Xt−s − X̄T )‖2 = Op(T
−1), (B.42)

see also (B.8). Then from Lemma 4.3 of Bosq (2000) that the eigenvectors (u1,T , . . . , uϕ,T )

converges to those of (mT )−1PAΛTP
A, whose span is given by A (see also Proposition 3.2

and its proof in Chang et al. (2016)). This implies that PA
T =

∑ϕ
j=1 uj,T and P C

T = I − PA
T

59



satisfy

‖PA
T − PA‖LH = Op(T−1) (B.43)

‖P C
T − P C‖LH = Op(T−1) (B.44)

Then from (B.42), (B.43), (B.44), we may easily deduce that

‖P C
TP

AΛTP
AP C

T ‖LH = Op

(m
T

)
‖P C

TP
AΛTP

CP C
T ‖LH = Op

(m
T

)
‖P C

TP
CΛTP

AP C
T ‖LH = Op

(m
T

)
P C
TP

CΛTP
CP C

T →LH P CΛTP
C

That is, we have

P C
TΛTP

C
T →LH P CΛTP

C.

Note that P CΛTP
C is the long-run covariance of the stationary component (ν̃t, t ≥ 1).

Lemma B.1(i) implies that we have P CΛTP
C →LH P CΛνP

C. Then from Lemma 4.3-4.4 of

Bosq (2000), we may deduce the (uϕ+1,T , . . . , u`,T ) converge to the eigenvectors of P CΛνP
C.

Then it may be easily shown that Π`
T satisfy the requirements in Assumption P.

(Inclusion of a linear trend, Remark 3.14) With a slight modification of our Lemma

B.2 and the above proof, we can similarly show that the first ϕ eigenvectors converges to

an orthonormal basis of A. Using Lemma B.1(ii), it can be shown that the eigenvectors of

P CΛ̃TP
C converge to those of P CΛνP

C. The remaining proof is quite apparent as before, so

omitted.

Proof of Proposition 3.6

From Theorem 4.2 of Chang et al. (2016) and Lemma 4.3-4.4 of Bosq (2000), we may deduce

that

ΠA
T :=

ϕ∑
j=1

uj,T ⊗ uj,T →LH PA

ΠC
T :=

∑̀
j=ϕ+1

uj,T ⊗ uj,T →LH
∑̀
j=ϕ+1

uj ⊗ uj =: P C
`−ϕ,
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where (uϕ+1, . . . , u`(ϕ0)) are the eigenvectors of P CCν0P
C. Clearly Π`

T converges to Π` includes

A as a subspace, so we have

dim(ran Π` ∩ A) = dim(A).

Moreover, P C
`−ϕΛνP

C
`−ϕ is positive definite on ranP C

`−ϕ by Assumption P2, which implies

that rank Π`P CΛνP
CΠ` = `− ϕ hold.

(Inclusion of a linear trend, Remark 3.14) Even if Theorem 4.2 of Chang et al. (2016)

does not explicitly consider a linear trend, it only requires a slight and obvious modification

to extend their result to the case. Hence, the detailed proof is omitted.

C Additional Simulation Results

In this section, we modify the DGP in Section 4 by setting I1 = {1, . . . , ϕ}, i.e. the attractor

space now is fixed to the span of {ζ1, . . . , ζϕ}. This change reduces complexity of the at-

tractor space in the sense that only less oscillating functions, that can be written as a linear

combination of {ζj}ϕj=1, can be included as an element. In addition to the tests considered in

in Section 4, we also report finite-sample sizes and powers of the CKP test and the TCKP test.

The long-run covariance Π`
T (ϕ0)Λ∆X,TΠ`

T (ϕ0) for those tests is computed with the Parzen

kernel and the bandwidth choice proposed by Andrews (1991). Moreover, for the TCKP(ϕ0)

test, the projection Π`
T (ϕ0) is obtained from the first ϕ0-leading eigenvectors of ΛT as in

Section 4.2. Tables 6 and 7 report our simulation results. The B test tends to have better

finite-sample power overall, but the reported over-rejection caused by choosing h = hb/1.5

seems to be bigger than that reported for the original DGP. Moreover, all the considered

top-down tests in Section 4 work well. Especially it should be noted that NSSC for the

original DGP was severely over-sized when T = 150, but now it has excellent size control

and better finite-sample power. The performance of the T0 test seems to be similar to that

of NSSC, but it displays a lower finite-sample power than NSSC. In general, T and NSSK

may be less preferred to either of the T0 test and NSSC. All these significant changes in the

finite-sample performances of the top-down tests suggest that complexity of the attractor

space is a crucial factor. Meanwhile, the CKP test has a reasonable size control when ϕ ≤ 2

(resp. ϕ ≤ 3) when T ≤ 350 (resp. T = 750). The TCKP test does not exhibit a severe

over-size unless θ = 0.7 and ϕ = 5.

We next modify the simulation DGP in Section 4 by setting {ζj}21
j=1 to the first 21

Legendre polynomials. The functional observations are constructed by smoothing {Xt}Tt=1

observed at 200 regularly spaced points of [0, 1] using the first 31 Fourier basis functions.

This setting is very similar to that considered in Nielsen et al. (2019), but there is difference
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in the employed permutation scheme. They permute the first 8 Legendre polynomials and

the remainders respectively, and combine those in order. As a result, the first 8 elements

{ζ[1], ζ[2], . . . , ζ[8]} are always pick from the first 8 Legendre polynomials. Clearly this is a

special case of our permutation scheme described in Section 4. Tables 8 and 9 report our

simulation results. There is a noticeable difference in finite-sample performance of NSSK

relative to those of the other tests: the test was relatively conservative in our simulation

results from the DGP considered in Section 4, but now it rejects the correct null hypothesis

more frequently than the T test or the T0 test does.

Lastly, we fix the attractor space to the span of the first ϕ Legendre polynomials, and

investigate the finite-sample performances of the tests, including the CKP test and the TCKP

test. Tables 10 and 11 summarize our simulation results. For the B test, the reported over-

rejection caused by choosing h = hb/1.5 appears to be bigger compared to the case when A

is randomly determined, which is similarly observed in Table 6. Note that all the top-down

tests have good size control; even if the CKP test seems to be over-sized when T = 150 and

ϕ ≥ 4, such a size distortion becomes disappear as T gets larger.

D Log-density estimation

In Section 5.2, each log wage density logXt at time t is obtained from the following procedure.

Given survey responses x1, . . . , xn with design weights w1, . . . , wn such that
∑

i=1wi = n,

we consider the weighted log-likelihood

l(Xt) =
n∑
i=1

wi log(Xt(xi))− n
(∫

Xt(u)du− 1

)
.

Let K be the support of Xt. Under some local smoothness assumptions, we can consider

a localized version of the log-likelihood and logXt(u) can be locally approximated by a

polynomial function, as follows.

lp(Xt)(x) =
n∑
i=1

wi k

(
xi − x
h

)
Q(xi − x;αt)− n

∫
k

(
u− x
h

)
exp(Q(u− x;αt))du (D.1)

where k(·) is a suitable kernel function, h is a bandwidth which assumed to be fixed, and

Q(u;αt) is polynomial in u with coefficients αt.

We set W(u) = 70
81

(1 − |u|3)3 as commonly employed and suggested in Loader (2006),

and Q(u;α) = α0,t + α1,tu+ α2,tu
2. For fixed x ∈ K, let (α̂0,t, α̂1,t, α̂2,t) be the maximizer of

(D.1). Then the local likelihood log-density estimate is given by

l̂ogX t(x) = α̂0,t
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The procedure is repeated for a fine grid of points, and then l̂ogX t may be obtained from

an interpolation method described in (Loader, 2006, Chapter 12). Each log wage density is

estimated on [3.5, 31.5] including all the historical observations, and h = 4.5 is employed for

all t.
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Table 6: Simulation results for the bottom-up test with κ(ϕ0) = 2 (fixed attractor)

(a) θ = 0.1, baseline bandwidth

T ϕ0=0 1 2 3 4 5
size

150 4.5 2.2 3.1 1.9 1.7 1.4
350 4.6 3.6 4.2 3.4 3.4 2.9
750 4.9 4.2 5.0 4.6 4.6 4.6

power, q = 1
150 87.8 63.5 49.0 39.8 28.7 20.6
350 94.5 83.8 78.0 74.7 68.3 60.3
750 98.4 94.7 94.1 93.7 91.2 89.3

power, q = 2
150 97.0 95.2 88.8 71.9 50.1 30.7
350 99.9 99.4 99.2 99.3 97.9 92.8
750 100 100 100 100 100 100

(b) θ = 0.7, baseline bandwidth

T ϕ0=0 1 2 3 4 5
size

150 8.2 4.4 5.7 4.6 4.0 3.7
350 6.1 4.9 6.3 7.0 6.1 6.4
750 5.7 5.2 6.1 6.3 6.6 6.4

power, q = 1
150 90.4 63.6 51.4 43.2 31.5 23.2
350 95.8 84.8 78.8 76.2 68.6 62.0
750 98.5 94.1 93.6 93.1 91.6 90.0

power, q = 2
150 96.5 93.8 87.0 69.3 52.8 34.6
350 99.7 99.4 99.4 97.9 95.7 89.4
750 100 100 100 100 100 99.6

(c) θ = 0.1, baseline bandwidth/1.5

T ϕ0=0 1 2 3 4 5
size

150 4.9 3.6 3.4 3.4 3.0 2.5
350 4.9 4.4 5.0 4.8 4.2 3.9
750 5.0 4.2 5.0 5.4 4.7 5.2

power, q = 1
150 94.9 82.8 75.6 70.4 61.3 54.0
350 98.4 94.4 93.3 92.3 90.8 89.2
750 99.4 98.6 98.8 99.0 98.6 98.7

power, q = 2
150 99.0 99.0 98.4 92.5 82.9 68.6
350 100 100 100 100 99.8 99.2
750 100 100 100 100 100 100

(d) θ = 0.7, baseline bandwidth/1.5

T ϕ0=0 1 2 3 4 5
size

150 10.5 7.4 9.7 11.7 12.3 12.4
350 8.6 7.5 10.8 11.1 12.1 13.8
750 6.6 6.0 7.8 8.7 10.4 11.4

power, q = 1
150 95.2 83.5 77.2 71.8 65.8 60.4
350 98.5 94.5 93.2 93.4 91.6 90.6
750 99.3 98.5 98.9 98.9 99.2 99.1

power, q = 2
150 98.3 98.9 97.1 91.2 83.9 71.8
350 99.9 100 100 99.9 99.6 98.6
750 100 100 100 100 100 100

(e) θ = 0.1, baseline bandwidth×1.5

T ϕ0=0 1 2 3 4 5
size

150 4.1 1.7 1.2 1.0 0.5 0.2
350 4.4 2.9 2.8 2.3 1.7 2.3
750 3.9 3.6 4.3 4.5 3.6 3.9

power, q = 1
150 79.0 39.4 22.6 14.4 6.3 3.6
350 90.6 65.7 54.1 45.0 34.6 25.8
750 95.8 84.8 80.3 76.2 69.4 63.3

power, q = 2
150 93.7 80.4 62.9 36.6 17.5 7.4
350 98.9 96.0 94.0 91.0 82.1 67.7
750 100 99.7 99.5 99.4 98.9 98.6

(f) θ = 0.7, baseline bandwidth×1.5

T ϕ0=0 1 2 3 4 5
size

150 5.4 2.0 1.8 1.7 1.1 0.8
350 5.3 3.6 4.3 3.2 2.8 2.3
750 5.5 4.0 4.8 4.8 4.2 3.9

power, q = 1
150 79.4 42.1 24.2 14.8 8.2 5.2
350 90.7 66.8 53.3 44.2 35.0 26.3
750 95.7 84.3 80.8 75.8 70.4 63.0

power, q = 2
150 93.1 79.5 63.1 34.6 16.8 7.6
350 98.8 95.8 93.4 87.9 78.0 60.6
750 99.9 99.5 99.4 99.3 98.6 96.8

Notes: (i) The results are based on 4,000 Monte Carlo replications. (ii) Power is calculated when the
cointegration corank is ϕ0 + q.
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Table 7: Simulation results for top-down tests (fixed attractor)

θ = 0.1, size

T Test ϕ0 = 1 2 3 4 5

150 T 5.1 3.2 2.6 2.6 2.2

T0 4.8 3.4 3.4 3.7 3.6

NSSK 2.3 1.0 0.8 0.5 0.4

NSSC 5.2 4.0 3.5 3.7 3.5

TS 3.1 1.1 0.4 0.1 0.0

CKP 5.0 8.3 26.4 2.9 0.1

TCKP 4.2 3.6 5.1 2.4 0.6

350 T 4.2 4.4 4.6 3.2 3.2

T0 5.2 5.0 4.4 4.5 4.8

NSSK 4.2 3.8 3.2 3.2 3.1

NSSC 4.5 5.1 4.5 4.4 4.0

TS 3.7 2.5 2.0 1.3 0.7

CKP 4.3 4.9 30.4 66.4 74.9

TCKP 4.6 4.4 5.1 6.3 11.8

750 T 5.4 4.1 4.3 3.7 4.0

T0 5.0 4.7 4.6 4.9 4.5

NSSK 5.0 4.8 4.2 4.3 4.0

NSSC 5.2 4.8 4.8 5.0 4.6

TS 4.5 4.4 3.2 2.8 2.0

CKP 4.6 5.0 7.4 19.1 73.9

TCKP 5.1 4.7 5.2 5.6 7.7

θ = 0.7, size

T Test ϕ0 = 1 2 3 4 5

150 T 4.3 2.5 2.1 1.8 0.8

T0 4.1 3.1 2.8 2.2 2.4

NSSK 1.6 0.6 0.4 0.0 0.0

NSSC 4.7 4.2 3.1 2.3 3.0

TS 3.3 1.2 0.4 0.1 0.0

CKP 5.3 11.9 42.5 15.5 4.3

TCKP 4.4 5.8 11.8 9.5 3.7

350 T 4.1 3.6 3.3 3.0 2.4

T0 5.3 4.0 4.6 4.4 3.6

NSSK 4.2 2.6 2.5 1.8 1.8

NSSC 4.9 4.0 4.5 4.0 3.8

TS 4.1 2.6 1.8 1.3 0.7

CKP 4.2 6.5 35.9 72.7 89.3

TCKP 4.6 5.2 9.2 14.2 26.4

750 T 5.0 3.6 4.2 4.3 3.2

T0 5.0 4.5 4.7 4.6 4.3

NSSK 4.4 4.7 4.0 4.0 3.9

NSSC 5.4 5.4 4.2 4.4 4.7

TS 5.4 3.0 2.6 2.6 1.9

CKP 4.5 4.9 10.4 25.7 79.9

TCKP 4.4 4.9 6.6 8.5 15.6

θ = 0.1, power

T Test ϕ0 = 1 2 3 4 5

150 T 98.8 93.8 92.2 91.7 87.7

T0 99.8 97.3 97.4 97.0 96.7

NSSK 73.6 42.2 26.4 19.2 11.0

NSSC 99.8 97.5 97.4 98.1 97.2

TS 100 52.7 15.4 2.9 0.2

CKP 100 94.1 42.3 3.2 0.2

TCKP 100 92.2 49.7 6.4 0.2

350 T 100 99.4 99.4 99.4 99.7

T0 100 100 99.9 99.9 100

NSSK 99.9 90.5 91.6 90.4 88.8

NSSC 100 100 99.9 100 100

TS 100 100 99.2 71.2 32.1

CKP 100 100 100 98.9 78.1

TCKP 100 100 100 99.2 78.7

750 T 100 100 100 100 100

T0 100 100 100 100 100

NSSK 100 99.6 99.0 99.7 99.8

NSSC 100 100 100 100 100

TS 100 100 100 100 99.8

CKP 100 100 100 100 100

TCKP 100 100 100 100 100

θ = 0.7, power

T Test ϕ0 = 1 2 3 4 5

150 T 88.8 76.6 64.4 54.1 38.8

T0 93.0 83.5 74.0 65.7 53.4

NSSK 46.3 17.7 7.7 3.0 1.3

NSSC 94.8 87.7 84.8 78.1 73.9

TS 100 74.4 27.9 7.6 1.5

CKP 100 96.8 59.2 16.6 3.6

TCKP 100 96.3 67.1 20.0 4.0

350 T 98.7 95.4 93.5 91.4 87.0

T0 99.3 97.6 97.0 96.0 94.3

NSSK 95.2 76.2 69.5 65.6 56.0

NSSC 99.7 99.0 98.2 97.6 97.4

TS 100 100 99.9 88.6 59.1

CKP 100 100 100 99.8 90.7

TCKP 100 100 100 99.6 89.6

750 T 100 99.6 99.3 99.2 99.2

T0 100 99.7 99.6 99.7 99.5

NSSK 99.9 97.0 97.0 97.0 97.4

NSSC 100 99.8 99.9 99.8 99.9

TS 100 100 100 100 100

CKP 100 100 100 100 100

TCKP 100 100 100 100 100

Notes: (i) The results are based on 4,000 Monte Carlo replications. (ii) Power is calculated when the
cointegration corank is ϕ0 − 1.
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Table 8: Simulation results for Bϕ0,κ(ϕ0) with κ(ϕ0) = 2 (Polynomial)

(a) θ = 0.1, baseline bandwidth

T ϕ0=0 1 2 3 4 5
size

150 4.6 2.9 2.6 2.1 1.5 1.3
350 4.0 4.2 3.0 3.7 2.8 2.6
750 4.2 4.8 3.6 4.4 4.1 3.8

power, q = 1
150 89.2 62.4 43.1 31.4 19.6 11.3
350 95.2 83.8 78.2 74.2 65.4 55.4
750 98.3 94.8 94.3 92.8 91.1 88.2

power, q = 2
150 98.3 86.7 74.2 57.8 44.1 32.5
350 99.9 99.2 97.9 94.6 90.8 85.2
750 100 100 99.9 100 99.4 98.9

(b) θ = 0.7, baseline bandwidth

T ϕ0=0 1 2 3 4 5
size

150 8.1 5.0 4.5 4.0 2.8 2.7
350 6.6 5.3 5.6 5.0 6.0 4.2
750 6.2 5.9 5.5 5.1 5.9 5.5

power, q = 1
150 88.5 62.2 45.2 33.6 22.8 15.4
350 95.4 84.5 79.1 72.5 65.2 57.2
750 98.1 94.3 94.7 93.4 91.9 89.2

power, q = 2
150 98.6 85.0 71.4 59.4 44.1 33.8
350 99.9 98.4 96.9 94.5 89.4 84.2
750 100 99.9 99.7 99.8 99.2 98.8

(c) θ = 0.1, baseline bandwidth/1.5

T ϕ0=0 1 2 3 4 5
size

150 5.0 4.4 3.5 3.5 2.7 2.4
350 4.8 4.7 4.6 4.5 4.1 4.0
750 5.5 5.2 4.8 4.7 4.9 4.4

power, q = 1
150 94.6 78.0 67.0 54.2 42.9 32.0
350 98.2 93.5 93.4 91.6 87.7 82.2
750 99.3 98.9 98.1 98.9 98.6 97.9

power, q = 2
150 99.6 94.0 89.2 82.6 73.1 64.5
350 100 99.9 99.5 99.1 98.1 96.5
750 100 100 100 100 100 99.9

(d) θ = 0.7, baseline bandwidth/1.5

T ϕ0=0 1 2 3 4 5
size

150 11.4 9.2 9.5 8.2 8.4 9.0
350 8.6 7.9 8.0 9.1 9.9 10.4
750 7.1 7.2 7.2 8.2 8.3 8.8

power, q = 1
150 94.0 79.1 67.0 59.2 46.2 38.8
350 98.5 94.0 93.0 91.6 87.3 81.4
750 99.6 98.7 98.9 98.8 98.8 97.7

power, q = 2
150 99.5 94.3 89.4 83.2 74.4 67.4
350 100 99.6 98.8 98.5 97.7 96.7
750 100 99.9 100 100 100 100

(e) θ = 0.1, baseline bandwidth×1.5

T ϕ0=0 1 2 3 4 5
size

150 3.5 2.0 1.2 0.6 0.5 0.5
350 4.4 3.6 2.7 2.1 2.0 1.6
750 4.6 4.6 3.8 3.0 2.9 3.3

power, q = 1
150 80.7 39.0 19.5 9.9 5.4 3.3
350 90.1 67.0 53.4 45.2 32.0 23.8
750 95.6 85.1 81.0 76.2 68.1 61.1

power, q = 2
150 96.5 68.1 46.4 28.2 15.2 8.7
350 99.6 96.1 90.1 81.2 70.2 58.8
750 99.9 99.8 99.6 99.0 97.1 94.6

(f) θ = 0.7, baseline bandwidth×1.5

T ϕ0=0 1 2 3 4 5
size

150 5.3 2.6 1.8 1.2 0.8 0.4
350 5.7 4.2 3.1 3.0 2.3 2.0
750 5.8 5.0 3.8 4.1 3.9 3.2

power, q = 1
150 79.4 41.4 21.0 10.5 5.9 3.2
350 90.1 67.4 54.6 44.4 33.0 24.3
750 95.4 85.4 79.4 75.3 69.8 62.4

power, q = 2
150 95.8 67.8 43.8 28.0 14.0 8.9
350 99.5 94.4 88.5 78.2 65.2 56.2
750 100 99.6 99.0 98.5 95.9 91.8

Notes: (i) The results are based on 4,000 Monte Carlo replications. (ii) Power is calculated when the
cointegration corank is ϕ0 + q.
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Table 9: Simulation results for top-down tests (Polynomial)

θ = 0.1, size

T Test ϕ0 = 1 2 3 4 5

150 T 4.7 4.5 5.3 6.1 7.6

T0 4.8 5.4 6.8 8.7 11.4

NSSK 4.9 5.0 6.0 10.5 14.9

NSSC 7.5 14.2 23.6 31.0 37.1

TS 4.0 1.9 1.5 1.3 1.8

350 T 5.5 4.5 4.2 4.2 4.3

T0 5.4 5.2 4.6 5.6 6.2

NSSK 4.2 4.5 5.4 7.0 11.4

NSSC 5.5 6.1 7.8 12.0 14.4

TS 4.0 3.2 2.4 2.2 2.9

750 T 4.5 4.0 4.3 4.3 3.8

T0 5.9 5.4 4.6 4.8 5.2

NSSK 5.2 4.2 5.2 6.0 7.9

NSSC 5.7 5.0 5.4 6.3 7.2

TS 4.7 4.2 3.7 3.7 3.7

θ = 0.7, size

T Test ϕ0 = 1 2 3 4 5

150 T 3.8 4.0 4.4 4.8 5.3

T0 4.8 4.4 5.9 8.0 8.4

NSSK 4.0 4.3 4.9 6.9 10.2

NSSC 7.8 14.0 20.5 25.0 28.1

TS 4.5 3.0 1.8 1.8 1.6

350 T 4.6 4.7 3.8 4.1 4.2

T0 5.6 4.9 5.0 5.7 5.7

NSSK 4.5 5.2 5.6 6.9 11.4

NSSC 6.0 6.0 10.0 13.8 18.2

TS 4.6 4.0 3.4 3.6 3.8

750 T 4.8 4.5 4.0 4.5 4.0

T0 5.1 5.1 4.6 4.8 4.9

NSSK 5.2 5.0 5.4 6.2 8.5

NSSC 5.1 4.7 5.2 6.8 8.4

TS 4.8 3.8 4.3 3.9 4.2

θ = 0.1, power

T Test ϕ0 = 1 2 3 4 5

150 T 98.7 93.4 92.2 91.6 88.7

T0 99.9 97.6 97.4 97.5 97.0

NSSK 99.1 90.6 92.9 93.5 93.4

NSSC 99.7 96.8 97.7 98.0 97.4

TS 99.9 50.8 24.2 20.2 21.8

350 T 100 99.3 99.3 99.7 99.5

T0 100 100 99.8 99.9 100

NSSK 100 99.7 99.7 99.8 99.8

NSSC 100 99.9 99.9 100 100

TS 100 100 95.8 69.8 55.7

750 T 100 100 99.9 100 100

T0 100 100 100 100 100

NSSK 100 100 100 100 100

NSSC 100 100 100 100 100

TS 100 100 100 100 99.0

θ = 0.7, power

T Test ϕ0 = 1 2 3 4 5

150 T 84.0 77.2 69.8 62.6 54.7

T0 88.8 84.0 79.8 75.2 69.0

NSSK 80.9 72.6 70.2 68.2 63.2

NSSC 94.1 88.0 85.2 83.8 79.8

TS 100 72.7 36.0 24.4 18.0

350 T 98.2 95.6 95.0 93.4 91.6

T0 99.5 97.7 97.6 97.0 96.2

NSSK 99.0 96.5 95.8 96.0 96.2

NSSC 99.0 96.5 95.8 96.0 96.2

TS 100 100 98.8 85.7 69.0

750 T 99.9 99.4 99.5 99.6 99.6

T0 100 99.9 99.8 99.9 99.9

NSSK 100 99.6 99.6 99.8 99.9

NSSC 100 100 99.8 100 99.9

TS 100 100 100 100 99.8

Notes: (i) The results are based on 4,000 Monte Carlo replications. (ii) Power is calculated when the

cointegration corank is ϕ0 − 1.
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Table 10: Simulation results for Bϕ0,κ(ϕ0) with κ(ϕ0) = 2 (Polynomial, fixed attractor)

(a) θ = 0.1, baseline bandwidth

T ϕ0=0 1 2 3 4 5
size

150 4.0 4.2 2.9 2.4 1.6 1.2
350 5.6 5.2 4.6 3.8 3.3 2.5
750 4.8 6.0 5.8 4.2 3.6 4.0

power, q = 1
150 88.2 63.2 49.4 39.0 30.3 18.9
350 95.2 84.6 80.4 75.4 67.0 63.1
750 98.1 94.4 94.0 93.5 91.5 90.3

power, q = 2
150 98.4 94.7 91.7 86.1 72.1 59.8
350 99.8 99.8 99.4 99.4 99.1 98.0
750 100 100 100 100 100 100

(b) θ = 0.7, baseline bandwidth

T ϕ0=0 1 2 3 4 5
size

150 7.5 7.0 6.0 5.5 5.0 3.8
350 6.9 6.9 6.4 6.5 6.8 6.4
750 5.3 6.4 6.2 6.4 6.1 6.0

power, q = 1
150 89.6 66.5 55.1 47.2 37.2 25.4
350 95.8 85.4 81.8 77.2 74.0 68.2
750 98.6 94.8 93.7 93.9 93.5 91.7

power, q = 2
150 97.8 95.5 90.9 86.4 69.9 58.1
350 99.6 99.5 99.6 99.4 98.6 97.8
750 100 100 100 100 100 100

(c) θ = 0.1, baseline bandwidth/1.5

T ϕ0=0 1 2 3 4 5
size

150 4.5 5.2 4.4 3.6 3.3 2.6
350 4.8 5.2 5.0 5.3 4.1 4.5
750 5.2 5.8 6.3 5.4 5.0 4.6

power, q = 1
150 95.4 80.8 74.6 68.0 61.2 48.6
350 98.2 93.6 92.6 92.3 91.2 89.5
750 99.5 98.3 98.7 98.7 98.5 98.6

power, q = 2
150 99.3 99.4 99.0 98.3 93.0 88.4
350 99.9 100 100 100 99.9 99.9
750 100 100 100 100 100 100

(d) θ = 0.7, baseline bandwidth/1.5

T ϕ0=0 1 2 3 4 5
size

150 12.0 10.4 11.4 13.0 13.2 12.4
350 8.7 8.5 10.4 11.6 12.3 14.0
750 6.7 7.8 8.2 8.9 9.5 10.4

power, q = 1
150 95.5 85.3 80.5 77.1 70.3 63.5
350 98.3 94.4 94.8 94.9 93.4 92.0
750 99.4 98.3 98.8 99.2 99.3 99.2

power, q = 2
150 99.0 99.3 99.1 98.1 93.8 89.8
350 100 100 100 100 99.9 100
750 100 100 100 100 100 100

(e) θ = 0.1, baseline bandwidth×1.5

T ϕ0=0 1 2 3 4 5
size

150 4.2 2.9 1.6 1.0 0.4 0.4
350 4.1 4.0 3.6 2.8 2.0 1.7
750 4.5 5.1 4.1 4.2 3.2 3.0

power, q = 1
150 79.8 40.8 22.9 14.5 8.5 3.9
350 90.8 67.1 54.4 45.6 35.4 26.6
750 95.4 85.3 79.5 76.2 71.0 65.1

power, q = 2
150 95.7 81.0 64.7 49.2 31.0 18.0
350 99.3 96.3 94.4 90.8 85.8 78.2
750 99.9 99.7 99.5 99.5 99.0 99.0

(f) θ = 0.7, baseline bandwidth×1.5

T ϕ0=0 1 2 3 4 5
size

150 5.8 4.8 2.6 1.8 1.6 1.0
350 5.3 4.7 4.2 3.6 2.3 2.5
750 5.2 5.5 4.8 4.5 4.7 4.0

power, q = 1
150 80.6 43.8 25.0 16.2 9.6 5.0
350 89.9 66.4 57.2 47.4 38.2 29.4
750 95.4 85.0 79.8 76.8 71.0 64.8

power, q = 2
150 94.8 81.0 63.7 49.3 30.6 18.3
350 99.3 96.5 93.8 91.9 84.1 76.7
750 100 99.4 99.5 99.4 99.0 98.5

Notes: (i) The results are based on 4,000 Monte Carlo replications. (ii) Power is calculated when the
cointegration corank is ϕ0 + q.
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Table 11: Simulation results for top-down tests (Polynomial, fixed attractor)

θ = 0.1, size

T Test ϕ0 = 1 2 3 4 5

150 T 4.5 3.1 2.9 2.9 2.4

T0 4.8 3.9 4.2 4.7 4.4

NSSK 4.2 4.0 3.3 4.0 3.3

NSSC 4.8 4.1 3.6 3.9 5.0

TS 2.8 2.1 1.3 1.6 1.2

CKP 4.0 4.1 4.3 10.0 15.8

TCKP 3.8 3.4 3.2 3.2 2.4

350 T 4.2 4.2 3.6 3.7 3.4

T0 5.1 4.9 4.5 5.0 5.0

NSSK 5.0 4.6 4.2 5.8 4.8

NSSC 5.6 4.2 4.2 4.8 4.8

TS 3.5 2.8 2.2 3.0 1.8

CKP 4.9 4.9 4.3 5.6 6.5

TCKP 4.6 4.6 4.6 5.2 4.3

750 T 4.9 5.0 4.4 4.4 3.4

T0 5.4 5.1 4.3 5.2 4.3

NSSK 4.6 5.0 5.0 4.3 4.6

NSSC 4.8 5.3 5.2 4.5 4.4

TS 3.5 3.5 2.5 4.2 2.4

CKP 4.4 5.0 4.5 6.3 5.1

TCKP 4.6 4.8 4.7 5.4 4.6

θ = 0.7, size

T Test ϕ0 = 1 2 3 4 5

150 T 3.4 2.7 2.0 1.4 1.0

T0 3.8 2.9 2.8 3.0 2.3

NSSK 3.3 2.8 1.8 2.1 2.2

NSSC 4.4 3.1 3.4 3.4 4.1

TS 2.4 1.2 1.6 1.2 0.7

CKP 4.4 4.1 5.2 9.8 13.6

TCKP 4.6 4.2 3.4 3.6 2.4

350 T 4.3 4.0 3.0 3.7 2.8

T0 4.7 4.2 4.1 4.0 4.3

NSSK 4.8 3.8 3.4 4.9 4.2

NSSC 4.6 4.2 4.0 4.5 4.1

TS 2.8 2.2 2.3 2.9 2.4

CKP 5.2 5.7 5.7 7.0 7.2

TCKP 4.9 4.7 4.4 6.1 4.4

750 T 5.1 5.0 3.7 4.0 3.6

T0 5.2 4.6 4.4 4.4 4.7

NSSK 4.9 4.7 4.2 5.3 4.2

NSSC 5.2 4.6 4.4 4.6 4.0

TS 2.9 3.0 2.6 3.8 2.7

CKP 4.4 5.2 5.0 6.0 6.2

TCKP 5.4 5.0 5.0 6.2 5.6

θ = 0.1, power

T Test ϕ0 = 1 2 3 4 5

150 T 99.1 92.6 91.3 90.9 87.8

T0 99.7 96.6 96.7 96.8 97.2

NSSK 99.2 88.6 88.9 88.0 89.0

NSSC 99.8 96.4 96.8 97.1 97.2

TS 99.9 96.9 86.4 74.8 59.5

CKP 100 99.2 95.7 87.5 73.2

TCKP 100 99.4 96.0 87.0 74.2

350 T 100 98.7 99.2 99.4 99.4

T0 100 99.8 99.9 100 100

NSSK 100 99.5 99.4 99.7 99.9

NSSC 100 99.9 99.8 100 99.9

TS 100 100 100 99.6 98.7

CKP 100 100 100 100 99.7

TCKP 100 100 100 100 99.6

750 T 100 100 99.9 99.9 100

T0 100 100 100 100 100

NSSK 100 100 100 100 100

NSSC 100 100 100 100 100

TS 100 100 100 100 100

CKP 100 100 100 100 100

TCKP 100 100 100 100 100

θ = 0.7, power

T Test ϕ0 = 1 2 3 4 5

150 T 89.6 75.2 67.0 54.8 41.9

T0 92.3 82.4 76.2 70.6 60.0

NSSK 87.0 67.6 62.8 55.5 49.9

NSSC 95.1 84.9 83.4 79.6 74.3

TS 100 96.9 84.3 65.9 45.0

CKP 100 99.3 96.5 86.2 72.8

TCKP 100 99.7 96.0 85.0 67.7

350 T 98.7 94.8 93.5 93.0 90.2

T0 99.6 97.2 97.0 96.3 95.8

NSSK 99.2 95.8 94.7 95.2 94.1

NSSC 99.7 98.1 97.9 97.8 97.4

TS 100 100 100 99.8 99.2

CKP 100 100 100 100 99.9

TCKP 100 100 100 100 99.9

750 T 100 99.4 99.0 99.5 99.2

T0 100 99.8 99.6 99.8 99.9

NSSK 100 99.6 99.5 99.9 99.8

NSSC 100 99.8 99.9 99.9 99.9

TS 100 100 100 100 100

CKP 100 100 100 100 100

TCKP 100 100 100 100 100

Notes: (i) The results are based on 4,000 Monte Carlo replications. (ii) Power is calculated when the
cointegration corank is ϕ0 − 1.
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