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Professor and Acting Department Head 
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2124 TAMU  
College Station, Texas 77843-2124 
 
Dear Dr. Waller, 
 
I am writing to apply for the position of Assistant Professor in Agricultural Marketing and Quantitative 
Analysis in the Department of Agricultural Economics at Texas A&M University. I expect to complete 
my Ph.D. in Agricultural and Applied Economics from the University of Illinois at Urbana-Champaign 
in May 2020. I believe that my solid economics trainings, policy-relevant research interests, 
multidisciplinary background, and extensive teaching and service experience make me an excellent 
match for this position. 

My research interests span the fields of environmental and energy economics and agricultural 
economics. My job market paper investigates the net impacts of the development of wind energy on 
local crop yields and farm operations. This study brings a new, policy-relevant perspective on the 
interactions among wind energy, crop yields, and farm returns and expenses, specifically, and generally 
on the relationship between renewable energy policy and agricultural production. Understanding these 
relationships can lead to better economic and environmental outcomes by taking potential externalities 
and spatial spillovers of wind energy into consideration. To deal with threats to causal identification, I 
develop an instrumental variables approach which exploits local wind potential and aviation safety 
restrictions as sources of exogenous variations in the development of wind turbines. I find positive 
effects of wind energy on neighboring crop yields, and then explore possible mechanisms. Using farm-
level data, I find no measurable increases in production inputs after wind turbines are installed, and 
most of the benefits from the yield increases are realized through higher labor and management returns. 
I also estimate the causal effects of wind turbines on local meteorological variables and find significant 
impacts, suggesting that the induced microclimate changes are likely the factors that lead to the higher 
yields. As another example, since wind turbines kill lots of bats and birds, my in-progress follow-up 
studies with coauthors investigate the increase in insecticide usage near new wind farms and its 
sequential impacts on local ecosystems and human health. 

Besides empirical studies, I have a strong theoretical background and conduct applied research with 
analytic general equilibrium models. For example, my coauthor and I investigate the welfare effects of 
environmental taxes to correct a pollution externality given imperfect competition with price 
discrimination in the energy sector. It is common for energy firms charge significantly different prices 
across residential and industrial users for identical products, but this effect has been overlooked in prior 
models exploring pollution externalities. Our results bring a new perspective that policymakers need 
to balance the tradeoffs of environmental tax changes among the gain from negative externality 
correction against the price discrimination distortion and the cost from enlarged distortion for the 
underproduction of goods due to market power. 
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With previous educational backgrounds in engineering, I maintain professional networks with many 
engineers and scientists, especially in the field of agricultural and environmental engineering. My 
unique background enhances my ability to engage in multidisciplinary communication and research. 
For instance, I am recently involved in an initial research project with my previous colleagues to 
decompose factors that drive the expansion of the U.S. Corn Belt to the north by utilizing high-quality 
remote sensing data.  

In addition to research, I am excited at the prospect of teaching in your department and I am well-
prepared to teach both theoretical (e.g., microeconomics) and applied (e.g., agricultural marketing) 
courses at the introductory level, and advanced courses in environmental, energy, natural resource 
economics, as well as program evaluation and general equilibrium models. I have gained rich teaching 
experience from serving as a teaching assistant for six semesters, with many courses of more than 150 
students. I often take full advantage of figures and real-life examples to inspire students, and use 
modern technologies like voting apps or even write simple program myself to improve teaching 
efficiency and quality. Paul Stoddard, a top-ranked senior lecturer, is willing to provide a reference 
letter specifically on my teaching performance under separate cover. Furthermore, as a graduate 
mentor, I have also worked one-on-one with summer exchange students from different countries on 
their short-term research projects for many years.  

An experience, which can contribute a lot to your diversity and international cooperation, is that I have 
developed deep networks with partner foreign institutes through my work experience as an assistant 
coordinator for the Office of International Programs/Affairs at the University of Chicago and the 
University of Illinois since 2012. I contribute significantly to building revenue-raising summer 
programs and fostering further long-term international collaboration, such as “3+2” joint degree 
programs. During the years when I served as the graduate supervisor, in total 114 international college 
students graduated from our summer programs. Roughly two-thirds of them chose to pursue graduate 
degrees abroad, and a quarter of them came back to the same university as master’s or Ph.D. students. 
I am confident that my experience in international programs can be especially valuable to your 
department. 

I have enclosed my curriculum vitae, my job market paper, and my transcripts. Three letters of 
reference will arrive under separate cover. Thank you in advance for your consideration. I look forward 
to hearing from you. 
 
Sincerely, 
 
Tengjiao Chen 
 
Ph.D. Candidate 
Department of Agricultural and Consumer Economics 
University of Illinois at Urbana-Champaign 
Tel: (217) 778-3537 
Email: tchen41@illinois.edu 
 
 



Chen, Tengjiao 
414 Mumford Hall, 1301 W Gregory Drive, Urbana, IL 61801    (217)778-3537    tchen41@illinois.edu 

EDUCATION                                                                                    
University of Illinois at Urbana-Champaign                                               Urbana, IL 
 Ph.D. Candidate, Agricultural and Applied Economics                        Expected 2020 

Committee: Erica Myers (Advisor), Eyal Frank, Don Fullerton, Daniel H. Karney, Madhu Khanna 
Research Fields: Environmental and Energy Economics, Agricultural Economics, Public Economics 

Harris School of Public Policy, The University of Chicago                                   Chicago, IL 
 Master of Public Policy with Honors                                                        2015 
University of Illinois at Urbana-Champaign                                            Urbana, IL 
 M.S., Agricultural and Biological Engineering                                             2013 
Zhejiang University                                                              Hangzhou, China 
 B.Eng., Biosystems (Agricultural) Engineering. First-class scholarship (top 3%). Ranking: 1/22         2011 
 Honors Undergraduate Program of Public Administration, Chu Kochen Honors College                 

WORKING PAPERS                                                                             
 “Wind Energy and Agricultural Production: Evidence from Farm-Level Data” (Job Market Paper) 

Abstract: This study investigates the impacts of sizable wind farms on neighboring crop yields and farm 
operations. I develop an instrumental variables approach which exploits local wind potential and aviation safety 
restrictions as sources of exogenous variation in the development of wind turbines. I find positive effects of wind 
energy on nearby crop yields. In particular, my preferred estimates indicate that soybean and corn yields increase 
by roughly 1.3 and 2.4 percent, respectively, given an additional 50 MW of wind capacity installed in the same 
county. I then probe two possible mechanisms. First, using farm-level data, I explore changes in farm operations 
and find no measurable increases in production inputs after wind turbines are installed despite the fact that 
landowners might be receiving royalties. My results further reveal that most of the benefits from the yield 
increases are realized through higher labor and management returns. Second, I estimate the causal effects of wind 
turbines on local meteorological variables and find significant impacts, suggesting that the induced microclimate 
changes are likely important contributors to higher yields.   

 “Environmental Taxes in General Equilibrium under Market Power” (with Daniel H. Karney) 
 “The Anticipation Effect of the Earnings Test Reform on Younger Cohorts” (with Yajie Sheng and Yu Xu, first 

and corresponding author, honors paper for M.P.P. degree. Revise and resubmit, Public Finance Review) 

RESEARCH IN PROGRESS                                                                        
 “The Impact of Wind Turbines on Infant Mortality – through Low-Frequency Noise or Pesticide Usage” (with 

Eyal Frank) 
 “Impacts of Wind Energy on Pesticide Usage and Bird Biodiversity” (with Luoye Chen, Yijia Li) 
 “Investigating the Reasons that Shift the U.S. Corn Belt to the North: Evidence from High-quality Remote 

Sensing Data” (with Tao Lin, Hao Jiang) 
 “Effects of Tax Policy on Technology in General Equilibrium” (with Luoye Chen) 

PUBLICATION                                                                                   
 Qian, X., Chen, T., Sheng, K., & Shen, Y. (2011). Quality characteristics of bamboo charcoal briquette based on 

corn and cassava starch adhesive. Transactions of the Chinese Society of Agricultural Engineering, 27(1), 157-
161. 

OTHER RESEARCH EXPERIENCE                                                                 
Research Assistant   Dept. of Agricultural and Consumer Economics, University of Illinois    2018 - present 
 Conduct an RCT project that attempts to systematically evaluate the relationship between projected and realized 

savings from the Weatherization Assistance Program with Dr. Erica Myers and Dr. Peter Christensen. 
Research Assistant   The National Bureau of Economic Research                                 2017 
 Explored heterogeneous misperceptions of energy costs with empirical analysis based on sale data from the U.S. 

refrigerator market with Dr. Erica Myers and Dr. Sebastien Houde. 
Research Assistant  Stigler Center, University of Chicago Booth School of Business           2014 
 Collected data and information on energy subsidy, emission policy, and carbon abatement implements of the 

coal industry in China for Dr. James Sallee. 



Graduate Researcher BioMASS Lab, University of Illinois                                  2011 - 2013 
 Developed an optimization model for maximizing the profits of rice farms in the Philippines based on crop 

growth simulation models and household survey data with Dr. Luis Rodriguez. 
Undergraduate Researcher  Bio-energy and Bio-materials Lab, Zhejiang University          2010 - 2011 
 Completed a province granted Sci-Tech Extension Project - Parameter Optimization of Densified Biomass Fuel 

for Scale Production, and published an academic paper with Dr. Kuichuan Sheng. 
Research Internship Dept. of Biosystems and Agricultural Engineering, Michigan State University    2009 
 Worked with the research group of Dr. Wei Liao in a project on pretreatment selection for maximizing ethanol 

output from animal wastes. 

TEACHING EXPERIENCE                                                                        
Teaching Assistant  ACE 222  Agricultural Marketing                     Fall 2017 - 2019 

ACE 231  Food and Agribusiness Management                  Spring 2019 
    ACE 232  Management of Farm Enterprises                Spring 2018 

ACE 449  Retirement and Benefit Planning                Spring 2017 
ACE 240  Personal Financial Planning                          Fall 2016 

Graduate Mentor  International Summer Immersion Program (ISIP)     Summer 2012 - 2013, 2016 - 2018 

PROFESSIONAL SERVICE                                                                       
Graduate Assistant ACES Office of International Programs, University of Illinois  2012 - 2013, 2016 - 2018 
 Established networks with multiple international institutes, especially in China, for cooperation on revenue-

raising study-abroad or joint-degree programs.  
 Served as a graduate supervisor for the International Summer Immersion Program. Assisted other office 

programs like Global Academy, Fulbright programs, and Food Security Symposium. Helped arrange meetings 
with international guests and scholars from organizations like USAID, USDA, World Bank, and IRRI. 

Office Assistant  Office of International Affairs, The University of Chicago       2014 - 2015 
 Coordinated various programs for international students. Maintained office website and arranged working 

schedules for all student assistants in the office. 

CONFERENCE AND WORKSHOP                                                                   
 2019 Agricultural and Applied Economics Association (AAEA) Annual Meeting, Atlanta, GA (07/2019) 
 2019 Association of Environmental and Resource Economists (AERE) Summer Conference, Lake Tahoe, NV (05/2019) 
 2019 Midwest Energy Fest, Chicago, IL (04/2019) 
 The program in Environmental and Resource Economics (pERE) seminar, Urbana, IL (02/2019) 
 2017 Berkeley/Sloan Summer School in Environmental and Energy Economics, Berkeley, CA (08/2017) 

SKILLS                                                                                            
 Computer skills: Stata, R, ArcGIS, Python, GAMS, Geoda, SAS, MATLAB, LaTeX, Mathematica, Photoshop 
 Language: native speaker in Mandarin and fluent in English 

REFERENCES                                                                                  
Erica Myers (Chair), Assistant Professor     Eyal Frank, Assistant Professor 
Dept. of Agricultural and Consumer Economics   Harris School of Public Policy  
University of Illinois at Urbana-Champaign    The University of Chicago  
(217) 300-2023·ecmyers@illinois.edu     (646) 581-7308·eyalfrank@uchicago.edu  
 
Don Fullerton, Gutgsell Professor of Finance    Daniel H. Karney, Assistant Professor 
Dept. of Finance          Dept. of Economics  
University of Illinois at Urbana-Champaign    Ohio University 
(217) 244-3621·dfullert@illinois.edu     (740) 597-1239·karney@ohio.edu 
 
(For Professional Service)        (For Teaching Experience) 
Suzana Palaska-Nicholson, Associate Director    Paul Stoddard, Lecturer in Agribusiness   
Office of International Programs, College of ACES   Dept. of Agricultural and Consumer Economics 
University of Illinois at Urbana-Champaign     University of Illinois at Urbana-Champaign  
(217) 244-2295·spalaska@illinois.edu     (217) 333-8507·pstoddrd@illinois.edu 



 
 

 



 

 
 



 

 





 

 Eyal Frank 
Assistant Professor 
Harris School of Public Policy  
University of Chicago 
 
2057 Keller Center 
1307 E. 60th Street.  
Chicago, IL 60637 
 
Tel: (646)-581-7308 
eyalfrank@uchicago.edu 

 

07/24/2019  

Dear Members of the Recruitment Committee, 

 

I am writing this letter in support or Tengjiao Chen’s application to your department. While I am 

not a formal member of Tengjiao’s dissertation committee, I have been discussing his work with 

him and collaborating with him on a project since 2018. Throughout this time, I have been very 

impressed with his ability to come up with interesting research questions at the intersection of 

agriculture, environment, and energy economics. Tengjiao has also demonstrated that he can 

skillfully execute his ideas and produce high quality research. In the following, I will describe the 

papers in his research agenda with which I am most familiar, his contributions to our collaborative 

project, and my overall impression regarding his potential to generate solid research papers in 

the near future. Briefly, Tengjiao has a promising career ahead of him and I highly recommend 

that you interview him for the position.  

Tengjiao broadly works on estimating externalities and unintended consequences in 

agricultural, environmental, and energy economics. He has one earlier publication from his time 

as an undergraduate, and a current Revise and Resubmit at the Public Finance Review, which is a 

paper from his MPP degree. These papers demonstrate that he has worked hard to be 

productive, and has gained valuable exposure and experience with the publication process. His 

current work focuses on the potential spillovers of wind energy, which he studies using several 

data sets. Covering an important and emerging renewable energy sector positions him to become 

a leading scholar on the subject of wind energy impacts across a wide array of outcomes.  

In his solo-authored job market paper, Tengjiao studies the degree to which wind energy 

production can have positive spillovers on crop yields. This is an important question to quantify 

and answer, as it can shape future policy which aims to direct the development of wind energy 

using different subsidies. If wind turbines do have a large positive impact on yields, policy could 

choose to incentivize their construction around farms. The main mechanism, as documented in 



the natural sciences literature, which connects wind turbines and crop yields has to do with 

mixing the air. To keep this brief, the wind turbines mix air from around the surface with that 

above the surface. This helps to better smooth out temperatures throughout the day, as well as 

increase CO2 concentrations, enabling faster growth of the crop.  

Studying this requires granular spatial data on the location of wind farms and economic 

activity. While previous papers, such as the work by Daniel Kaffine from the University of 

Colorado Boulder, have used county-level data, Tengjiao is able to use farm-level data for the 

state of Illinois. Accessing the data was the result of his independent work and tenacity. The high 

granularity of the data allows him to exploit the geocoded data on the location of wind turbines, 

and to include farm-level fixed effects in his analysis, while also controlling for time-varying farm 

inputs. In his JMP, the main outcome of interest is yields. However, instead of simply regressing 

farm crop yield on wind energy capacity, he utilizes an instrumental variable approach to account 

for the potential endogeneity of wind farm location. Because wind energy potential is an 

important determinant in the decision on where to construct a farm, it offers a potentially strong 

shifter of installed capacity, the variable of interest.  

After instrumenting for wind energy capacity, he finds large positive effects on corn and 

soy yields. While these results are based on one state, they offer the most granular results to 

date on this relationship. Tengjiao goes one step further and validates the local micro-climate 

impact that wind turbines have. This provides additional evidence in support of the main 

mechanism. As this paper makes an important contribution to our understanding of the spillovers 

from wind energy production to agriculture, I am confident that this paper will publish well in 

either JEEM, JAERE, AJAE or an equivalent quality journal.  

In my work with Tengjiao, we are interested in studying the health impacts of wind farms. 

The literature currently suggests that wind farms might have a direct impact through infrasound, 

such as in the work of Eric Zou from the University of Oregon, or that there might be an indirect 

effect on the use of pesticides through the negative impact wind turbines have on bat 

populations (which I study in a different paper). These offer two important, yet different, 

channels through which wind energy development could have an impact on human health for 

those living in the vicinity of such farms. With wind energy growing rapidly across the U.S. and 

the world, it is important we identify what is the magnitude of these effects, and if there is 

sufficient evidence that supports their existence. This again demonstrates that Tengjiao is 

working on large and important questions at the intersection of agriculture, environment, and 

energy economics.  

As such, we have collected data on infant and fetal health, as well as the universe of 

mortality in the U.S. Using the data Tengjiao has put together on the location of wind farms, the 

different wind potential scores, and the ways to construct installed capacity density variables 

across multiple scales, we aim to study how the development of wind energy relates to these 

outcomes. We are still in the early stages of the project, yet Tengjiao has already managed to 

impress me with his hard-working drive and ingenuity. His contributions to the project have been 



vital with getting the data together, thinking carefully on how it should be merged, and 

developing the testable hypotheses. A key challenge in this study it the assignment of treatment. 

Tengjiao has thought about this topic carefully, and how we stand to trade-off different elements 

when choosing among a set of treatment assignment rules. Our preliminary results already find 

evidence connecting wind energy development with an increase in the use of insecticides. This 

works through the channel of reducing bat populations, who often suffer death around wind 

farms. Bats offer a free source of pest control, and when they decline, farmers compensate by 

using more insecticides.  

To conclude, I find that Tengjiao is already a great colleague to work and interact with. I 

think he has found an important and understudied topic of research which covers several often-

overlapping areas of research, such that there will be a large community ready to discuss and 

engage with his type of work. I am delighted to recommend Mr. Chen for the position, and will 

be more than happy to answer any additional questions.  

 

Sincerely,  

Eyal Frank  

 

 

 



Dear Search Committee: 

It is my pleasure to provide a reference for Tengjiao Chen, who is an environmental economist 
completing his Ph.D. in the Department of Agricultural and Consumer Economics at the 
University of Illinois.  His primary research interests are in the intersection of agricultural and 
energy economics. He has extraordinary technical skills and careful approach to research.  The 
ACE department has a long tradition of producing well-trained economics researchers, many of 
whom go on to work in government policy offices, international NGO’s, the World Bank, and in 
private sector employment.  Tengjiao stands out from this group as one of the best students 
technically that I have interacted with in my 5 years in the department, and particularly, as 
someone who could excel in academic research.   

Of our previous students, I believe his research potential is most comparable to Andres Ham 
(2017), who received academic offers both inside the U.S. and internationally, ultimately 
choosing a position at Universidad de los Andes in his home country, Columbia.  Like Hamm, 
Tengjiao has been unusually entrepreneurial in developing his graduate research agenda 
independently.  His job market paper, “Wind Energy and Agricultural Production: Evidence from 
Farm-Level Data,” is sole-authored.  In addition, he developed his other two dissertation chapters 
by reaching out to researchers at other institutions, (Eyal Frank, U Chicago and Daniel Karney, 
Ohio University) and initiating collaborations.   

As I will describe below, Tengjiao also stands out in his mastery of different methodological 
approaches, which he applies in his dissertation.  In his work on the impacts of wind farms on 
agricultural output and ecosystem services, he has implemented modern reduced form empirical 
strategies to uncover causal relationships.  However, he also has an aptitude for math and 
theoretical analysis and has a dissertation chapter using an analytical general equilibrium model 
to investigate the welfare effects of Pigouvian pollution taxes under imperfect competition with 
price discrimination in energy sector.   

Tengjiao’s job market paper investigates the impact of wind farm operations on crop yields.  He 
uses an instrumental variables approach which exploits exogenous variation in installations due to 
two factors: 1) wind capacity and 2) citing restrictions caused by Federal Aviation Authority 
(FAA) aeronautical requirements.  Like previous work in this area (Kaffine, JEEM 2019), he 
finds that wind farms increase crop yields.  

The major contribution of his work is that he is then able to explore two mechanisms that might 
lead to this finding, one operational and one environmental.  The first hypothesis he explores for 
the increase in yield from wind farms is that farmers are using lease payments from the 
installations to invest in more inputs.  Using farm-level panel data from Illinois, he estimates the 
effect of wind farm installations on different aspects of farm operations including input costs and 
labor costs, and management returns to name a few.  He finds that wind installations cause higher 



income and returns on a per acre basis.  However, he does not find support that they lead to 
expansion of operating acres or purchase of more inputs.  

The second hypothesis he explores is that wind turbines increase yields through changing the 
microclimate.  He finds that windfarms increase the incidence of growing degree days (degree 
days between 10 and 30 degrees Celsius) and decrease the incidence of extreme degree days 
(degree days above 30 degrees Celsius).  He links this finding to literature from other disciplines, 
which suggest that wind farms can improve growing conditions by cooling air during the day and 
warming it slightly at night.  

These results suggest that changes in microclimates are likely a significant contributor to the 
higher yields on cropland as a result of nearby windfarms.  As far as I am aware, this positive 
externality is not widely discussed in renewable energy policy.  Given that climate change is 
projected to lead to an increased incidence of extreme degree days in the Corn Belt, the positive 
effects of windfarms on microclimates may become increasingly relevant.  Given its contribution 
I believe this paper has the potential to publish in a top field journal like JEEM or AJAE. 

Tengjiao’s second chapter, joint with Eyal Frank, aims to identify the effects of wind farms on 
infant mortality.  They use a difference-in-differences approach comparing counties in years 
before and after nearby wind farms were built relative to counties that are otherwise similar but 
not close to wind turbines. Using the confidential infant health and mortality data from the 
National Association for Public Health Statistics and Information Systems, their preliminary 
results imply that sizable wind farms lead to higher infant mortality nearby.  They also find that 
wind farms are associated with higher pesticide usage.  Since low-frequency noise generated by 
wind turbines may also negatively impact human health, their main contribution will be to 
distinguish whether it is the pesticides or the presence of turbines themselves that lead to the 
mortality result.  They will shed light on this by exploring whether the health effects are more 
concentrated in counties with large agricultural land area as compared to counties with little 
agricultural activity.   

The third chapter of Tengjiao’s dissertation, joint with Daniel Karney, demonstrates his 
methodological versatility.  They use a general equilibrium model to investigate the welfare 
effects of Pigouvian pollution taxation in settings, like some energy production markets, with 
imperfect competition and price discrimination.  They show that the welfare effects of 
environmental taxation under these conditions can be ambiguous.  Taxing energy to correct for 
negative pollution externalities enlarges the underproduction distortion under market power and 
has ambiguous consequences on the price discrimination distortion.  

Tengjiao has a variety of other projects in progress as well.  I expect his working moving forward 
to continue to draw from different methodologies to explore policy relevant questions in 
environmental and agricultural economics.  I am aware of a project joint with another graduate 
student, Luoye Chen, investigating the externality effects of subsidies on technology in general 
equilibrium.  In addition, he is part of an interdisciplinary team that is using remote sensing data 
to try to decompose the factors driving the northern expansion of the U.S. Corn Belt.       

Since I am writing letter for two students this year who are applying for many of the same jobs, I 
think it is important to emphasize that these are both exceptional students.  Either of them would 
have easily been the strongest environment student with skills in modern causal inference out of 
the ACE department in a normal year, if not over several normal years.  I strongly believe that 
either of them have potential to excel in economics research environments, including academic 
environments.  Tengjiao stands out with his impressive independence in developing a productive 
research agenda from early on in the program.     



In sum, I believe Tengjiao has the skills to excel in a research environment.  He has incredible 
technical proficiency and a careful approach to research.  This combined with his passion for the 
subject matter and his ability to develop collaborations with other researchers make me believe 
that he will continue to be productive.   

Please don’t hesitate to contact me if I can provide any further information. 

Sincerely, 

Erica Myers 



 
 
Prof. Don Fullerton    
Gutgsell Professor of Finance 
Gies College and IGPA 
4030 BIF, Box #30, MC-520  
515 East Gregory Drive 

 

 
 
 

Office: (217) 244-3621 
              Cell: (512) 750-6012 

Fax: (217) 244-3102                   
dfullert@illinois.edu 

Champaign IL  61820 http://works.bepress.com/don_fullerton 

To whom it may concern:          September 21, 2019 
 
Tengjiao Chen will finish a PhD by August 2020 in the Department of Agricultural and 
Consumer Economics (ACE) at the University of Illinois at Urbana-Champaign. I am 
writing to recommend him for an assistant professor position at a good college or 
university, or for a research position. My own appointment is 100% in the Finance 
Department of the Gies College of Business, but I have courtesy appointments in the 
IGPA, the Economics Department, and in ACE (in the College of Agriculture). Tengjiao 
took a class from me, and I am on his dissertation committee.  He is very smart, and he is 
well trained.  He will work very hard, and he will be able to publish his dissertation 
chapters successfully. I believe he will be a success in academia and in research. 
 
Tengjiao was in Agricultural Engineering here at UIUC in 2011-13, but he left to get a 
M.P.P. degree from the Harris School of Public Policy at the University of Chicago in 
2013-15. While there, he co-authored a paper that has been revised for resubmission to 
the Public Finance Review called “The Anticipation Effect of the Earnings Test Reform 
on Younger Cohorts.” He then came back to UIUC in 2015 to enter the PhD program in 
ACE, so he is now in his fifth year of this program. During his first year in 2015, he took 
all the required economic theory and econometrics courses, followed by field courses in 
environmental and energy economics, plus industrial organization and impact evaluation.  
 
In the fall of 2016 during his second year, he took my course called “General Equilibrium 
Analysis of Environmental Tax Policy”. This course is not for reading all the published 
papers in the field; instead it’s more of a “modelling methods” course. All students work 
to replicate all the math in several prior published papers, while learning how to build 
their own analytical G.E. model. Each comes up with their own idea for a term paper, and 
designs a model complete with production functions and resource constraints, consumer 
utility, and budget constraints. Then they differentiate all those equations to linearize the 
model, and solve the N linear equations for N unknown outcomes, effects of a small 
exogenous change in some policy variable or other shock. 
 
Within the one semester of this course, Tengjiao designed an excellent model, solved it, 
wrote an original research paper, and presented it to the class. Prior research had used 
partial equilibrium models to find that a pollution tax in a monopolized industry can lead 
to output reductions that exacerbate the distorting effects of monopoly and thus reduce 
welfare. Tengjiao extended that research to a general equilibrium setting and wrote an 
excellent term paper. Moreover, he pursued it after the course ended, by working with 
Prof. Dan Karney of Ohio University to produce an even more polished co-authored 
research paper that will be a chapter of his dissertation and can be submitted soon to a 
refereed journal. This paper now includes oligopolistic firms producing electricity for 
final demand by households but also sold to industry to use as an intermediate input. 
Because the consumer demand elasticity can differ from industry’s electricity input 
demand elasticity, electricity producers can engage in price discrimination.  
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All these equations are linearized, including production functions, resource constraints, 
consumer behavior, and industrial electricity input demands. The linearized equations are 
solved for the effects of a pollution tax not only on pollution, but on all industry factor 
inputs, intermediate inputs, outputs, prices, and consumer welfare. The model includes 
multiple market imperfections: pre-existing taxes, externalities, market power, and price 
discrimination. Thus, the second-best effects of a pollution tax are entirely ambiguous. 
Given the linearization with these existing distortions, the paper solves for welfare effects 
of small changes in the pollution tax rate, and explains the analytical results intuitively by 
decomposing the change in overall welfare into three effects: an externality correction 
effect, a production distortion effect, and a price discrimination effect. It then illustrates 
numerical magnitudes by inserting plausible parameter values for the U.S. economy into 
the analytical expressions, and finds that an environmental tax still typically leads to 
higher welfare in this setting with multiple distortions. This analysis is particularly 
applicable today, as electricity market power is changing amid carbon policy debates. 
 
His dissertation will also include a paper co-authored with Prof. Eyal Frank of the 
University of Chicago, called “The Impact of Wind Turbines on Infant Mortality – 
through Low-Frequency Noise or Pesticide Usage.”  I have not read that paper yet, and so 
cannot comment on it until the next version of this letter. 
 
Finally, Tengjiao is also working on a single-authored job market paper called “Wind 
Energy and Agricultural Production: Evidence from Farm-Level Data.” It is an empirical 
paper that improves in several ways upon previous efforts to measure the effect of 
multiple wind turbines in “wind farms” that are located on agricultural land. These wind 
farms have some effect on the wind, and therefore on local weather. That in turn may 
have some positive or negative effect on crop yields. He finds a significant positive 
effect: using his estimates, he calculates that an additional 50 MW of wind capacity raises 
yields in the same county for soybeans by 1.3% and for corn by 2.4%. To make these 
estimates more credible, he undertakes multiple additional steps and robustness checks. 
 
First, he assembles a large and comprehensive farm-level dataset for 2003 to 2017 that 
allows him to improve upon prior studies that are only at the county level. These data 
include farm labor and other inputs, and so they allow him to consider the possibility that 
royalty payments from the wind-energy companies to the farmers allow them to increase 
other farm inputs that could explain the increased crop yields. He finds no effect of the 
new wind turbines on farmers’ inputs. The increase in crop yields and revenues are thus 
attributable to increased yields from the same inputs. 
 
Second, he captures the spillover effects from one farm to another. He does not have 
specific farm locations, only their county, and so he must aggregate the development of 
wind turbines to the county level for his main estimates of the effects of wind turbines on 
crop yields, but he still captures external spillovers from the turbines on one farm to 
productivity at other farms within the county. That is, he finds the effect of all new wind 
farms in the county on productivity at all firms within the county. 
 
Third, he uses others’ research on how changes in wind can affect crop yields. He cites 
research that demonstrates the effects of wind turbines on microclimates up to 20 km 
downwind. Turbines mix the air vertically, which changes air moisture, carbon dioxide, 
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and air temperatures – particularly warmer temperatures at night and cooler temperatures 
during the summer days. It makes the microclimate endogenous, biasing OLS results.   
 
Fourth, while his main goal is to estimate the effects of wind turbines on crop yields, 
using an IV approach, he also estimates the significant effects of wind turbines on local 
meteorological variables. This result also helps confirm evidence that wind turbines are 
significant contributors to higher yields.  
 
Fifth, he deals with potential endogeneity from measurement error (e.g. spillover effects) 
and omitted variables (e.g., technological changes that may influence both agricultural 
technology and wind power technology). To do so, he constructs an entirely new 
instrument from data on potential wind power (wind power class) interacted with the 
aviation authority’s determination of where wind turbines can safely and legally be built. 
These instruments are plausibly related to the establishment of new wind turbines but are 
not a determinant of crop yields. All these steps demonstrate Tengjiao Chen’s careful and 
thorough approach to demonstrating causation in his econometric strategies. 
 
Tengjiao Chen is a hardworking and experienced research economist who will be a good 
academic researcher and teacher in the right kind of job where he can excel. You should 
consider him carefully, interview him at the meetings, and give him a chance to present 
his research. Thank you for your consideration, and please let me know if you have any 
other questions.  
 
Yours, 
 
 
Don Fullerton  
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To Whom It May Concern, 
 
This letter is in support of Tengjiao Chen in his application for an academic position at an 
agricultural economics department or energy/environmental position at an economics 
department. He is an energetic and highly-motivated economist using his diverse 
background to conduct policy-relevant research and provide effective teaching. 
Tengjiao’s research agenda lies at the intersection of agricultural economics and 
energy/environmental economics with a focus on externalities and spillovers. He has a 
number of interesting research projects in various stages of development with a few of 
those soon to be under review at well-placed academic journals.  
 
To be clear, I am not one of Tengjiao’s advisors on his dissertation committee but I have 
provided feedback on his job market paper and I am a co-author with Tengjiao on a 
separate research project. 
 
Tengjiao and I met approximately three years ago in Fall 2016 when I was an external co-
instructor for an elective course in analytical general equilibrium modeling at the 
University of Illinois. The primary instructor for that course was Prof. Don Fullerton and 
the purpose of the course was to provide students experience using a specific modeling 
technique and then have them develop an original research paper. The class presented 
their research at a mini-symposium and I acted as an external reviewer for all of the 
papers by providing detailed comments. Tengjiao had one of the best papers in the class 
and approximately one year later we began work as co-authors expanding the main idea 
and writing a journal-ready manuscript that is nearly ready for submission and review. I 
will expand on this specific research next.  
 
Again, Tengjiao has a variety of research projects at various stages of development. Here, 
I will describe the two projects that I am familiar with in terms of completeness, 
importance, and publishing potential. To start, our co-authored paper titled 
“Environmental Taxes in General Equilibrium under Market Power and Price 
Discrimination” analyzes the policy-relevant setting of a pollution producing energy 
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sector (e.g. electricity sector) that has market power and engages in price discrimination 
across industrial and residential customers. It is generally known that taxing pollution in 
similar settings makes the market power distortion worse, but we show that a pollution 
tax increase actually helps mitigate some of the price discrimination distortion. This 
paper is will be submitted shortly to a top field journal in environmental economics such 
as The Journal of Environmental Economics and Management (JEEM). 
  
The other research project of Tengjiao’s that I am familiar with is his job market paper 
titled “Wind Energy and Agricultural Production – Evidence from Farm-Level Data”. 
The motivation for that paper is to identify and measure the net externality of wind farms 
on nearby agricultural production. A previous paper looks at this question using county-
level data, but this analysis uses detailed farm-level data. Furthermore, Tengjiao employs 
a new instrumental variable (IV) to plausibly identify the causal impact due to the 
potentially endogenous natural of wind farm location. The main finding is that wind 
energy provides a net positive externality to nearby agricultural production, and 
specifically “corn and soybean yields increase by roughly 2.9 bushels and 0.89 bushels 
per acre, respectively, given an additional 50 MW wind capacity installed in the same 
county.” These estimated effects are economically meaningful and potentially generated 
by known micro-climate impacts of wind farms. Therefore, policies that limit the siting 
of wind farms should consider this positive externality on agricultural production when 
consider such regulations. Thus, this paper could fit in either a top energy economics 
field journal or similarly regarded agricultural economics journal. 
 
While I do not have direct knowledge of Tengjiao’s teaching abilities, we have discussed 
Tengjiao’s teaching philosophy and style (so that he could write an accurate Teaching 
Statement). My impression from these discussions is that Tengjiao actively seeks to 
improve his teaching. However, I know from my own work with Tengjiao that he is quite 
enthusiastic about economics, and that is a great foundation from which to teach. 
 
One of the unique aspects of Tengjiao’s background that makes him particularly suited to 
employment at an agricultural economics department is that he has a Master’s Degree in 
Agricultural and Biological Engineering. This enables Tengjiao to engage in 
interdisciplinary research due to his familiarity of across disciplines of jargon, topics, 
theories, and methods. 
 
I would like to digress a moment in my letter to note that I am not going to rank of 
department or institution to which I would recommend Tengjiao as I believe this leads to 
unnecessary, artificial pigeonholing. I know my practice is in contrast to that other Letter 
of Recommendation writers. Rather, when I am submitting a Letter then I am implicitly 
stating that Tengjiao is a feasible fit for the given job opening. I then leave it up to your 
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Search Committee (or equivalent process) to evaluate his application and quality of fit 
based on your own criteria. 
 
Regarding Tengjiao’s English language proficiency both his written and verbal skills 
have vastly improved since I met him three years ago. His spoken language is quite good 
and he communicates clearly. He does speak quickly sometimes but that is his 
enthusiasm for the ideas being discussed. In terms of technical writing, Tengjiao again 
clearly communicates but for journal-level publications he employs professional copy 
editors. However, I have seen his unedited slides for class presentations and there are no 
issues of concern in that context.  
 
In summary, Tengjiao is a conscientious, new academic economist with a great deal of 
motivation and potential, and thus I support Tengjiao’s application to your open 
academic position. Please call or email if you have any questions. 
 
Sincerely, 
 

 
 
Daniel H. Karney 
Ohio University 
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Abstract 

This study investigates the impacts of sizable wind farms on neighboring crop yields 

and farm operations. I develop an instrumental variables (IV) approach which 

exploits local wind potential and aviation safety restrictions as sources of exogenous 

variation in the development of wind turbines. I find positive effects of wind energy 

on nearby crop yields, and then probe two possible mechanisms. First, using farm-

level data, I explore changes in farm operations and find no measurable increases 

in production inputs after wind turbines are installed despite the fact that 

landowners might be receiving royalties. My results further reveal that most of the 

benefits from the yield increases are realized through higher labor and management 

returns. Second, I estimate the causal effects of wind turbines on local 

meteorological variables and find significant impacts, suggesting that the induced 

microclimate changes are likely important contributors to higher yields. 

 
JEL Codes: Q12, Q42, Q48, Q51, Q54 
Keywords: wind energy, crop yields, microclimates, farm operations, farm returns 

________________________ 
* Chen: Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign. 
tchen41@illinois.edu. This work is not based on any financial support. I wish to thank Erica Myers in particular for 
her advice and support. I am grateful for the dataset provided by the Illinois Farm Business Farm Management 
Association and help from Gary Schnitkey, Yilan Xu and Bradley Zwilling. I appreciate the helpful comments from 
Luoye Chen, Benjamin Crost, Tatyana Deryugina, Eyal Frank, Don Fullerton, Benjamin Gramig, Daniel Kaffine, 
Daniel Karney, Madhu Khanna, Rebecca Martin, Sarah Sellars, Mateus Souza, Juo-Han Tsay, and Eric Zou, as well 
as seminar participants at University of Illinois Program in Environmental and Resource Economics seminar, Midwest 
Energy Fest, AERE summer conference, and AAEA annual meeting. I also thank my department for providing student 
research travel awards. There are no conflicts of interest to report. All errors are mine.



‐ 1 ‐ 
 

1. Introduction 

Wind energy is important for climate goals and has been developing rapidly over the last 15 years 

in the U.S., with growing annual generation from 11,187 GWh in 2003 to 254,303 GWh in 2017. 

Wind generators currently provide roughly 6.3 percent of total U.S. utility-scale electricity 

generation, and the U.S. Department of Energy (DOE, 2017) envisions that wind power could 

grow to 20 percent in 2030 and 35 percent in 2050. A unique feature of wind energy is that the 

footprints of wind farms often overlap with croplands, especially in the Midwest. Wind turbine 

arrays can impact local agricultural production through several possible channels. Landowners 

could possibly plant more acreage or purchase additional production inputs with royalties from 

leasing the airspace to wind developers (Kaffine 2019). Scientific literature also suggests that wind 

farms may affect agricultural production through microclimate effects or impacts on local 

ecosystems (Dai et al. 2015; Rajewski et al. 2013; 2014). What is more complicated is that these 

effects can easily expand beyond farm or even county borders and thus present an externality. 

Landlords could bargain with wind energy companies through the leasing process, but they would 

not be concerned about effects beyond their own lands, even if they were fully aware of the impacts 

of wind turbines at the time of negotiation. Therefore, well-identified estimates of the net impacts 

of wind energy on agricultural production and outcomes on nearby farms would be helpful to 

quantify farmers’ welfare and to design better future renewable energy or agricultural policies.  

In this paper, I provide estimates of the net effects of the development of wind energy on 

neighboring crop yields, as well as operating expenses and returns, based on highly localized data 

at the farm level. My primary outcome variables are from certified longitudinal data collected by 

the Illinois Farm Business Farm Management Association (FBFM) and the University of Illinois 

from 2003 to 2017. To the best of my knowledge, this is the first study in the area that uses farm-
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level data with the ability to control for farm fixed-effects and inputs. I exploit variation in the 

timing and spatial densities of sizable wind farm operations to study how they affect farm-level 

outcomes. This study builds on prior work that uses county-level data in the U.S. and finds positive 

effects of wind farms on neighboring crop yields (Kaffine 2019), but provides several innovations. 

First, I develop an instrumental variables (IV) approach based on local wind potential and airspace 

feasibility to deal with threats to causal identification. Second, I further investigate two possible 

mechanisms: 1) my farm-level dataset allows me to directly examine whether operating expenses 

increase or not after wind turbines are installed nearby; and 2) I know the exact location of every 

wind turbine and can verify microclimate effects at a fine grid level. Third, I also attempt to 

quantify the net effects of the development of wind energy on farm returns.  

To identify the causal effects, I need to address measurement error and omitted-variable bias 

as two main sources of endogeneity. The measurement error may come from the spatial spillover 

effects. Many wind turbines are located near county borders. In particular, some of them are 

concentrated on one side of the borders, with their footprints clearly truncated by administrative 

boundaries. However, the local impacts of these wind turbines can easily extend to adjacent 

counties but may not be able to reach the other side of the same county. Wind development 

indicators that do not take this into account, such as county-level wind capacity density used in 

existing literature, could result in an underestimate of the true impact due to the fact that they only 

increase in the county where the wind turbines are installed but remain unchanged in the adjacent 

counties.  

The potential omitted-variable bias problem may occur if the development of wind turbines 

is associated with local time-varying unobservables that can also affect agricultural production. 

For instance, many scientific studies indicate that wind turbines can affect carbon dioxide, heat, 
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and moisture exchange between the surface and the atmosphere by enhancing vertical mixing of 

air when extracting kinetic energy (Baidya Roy 2011; Moravec et al. 2018). Therefore, local 

meteorological variables are potentially endogenous, while on the other hand, dropping them from 

the regression analysis could result in an omitted-variable bias. As another example, the adoption 

rate of genetically engineered (GE) seeds, which is only available at the state level, has increased 

remarkably during the same study period in Illinois. Farmers’ adoption decisions might be 

correlated with many factors, especially their attitudes toward new technology including wind 

energy.  

To deal with these challenges to identification, I develop an innovative instrumental variables 

(IV) approach. As a natural endowment, local wind energy potential measured by wind power 

class is a key driver for the development of wind energy. It is also exogenous and time-invariant 

(at least in the short term) in a given location, which implies that farm fixed-effects can largely 

capture its impacts on agricultural production in general. Therefore, given that the wind energy 

technology advancement and state-wide renewable energy policy changes across years are 

exogenous to crop yields, wind power class by year dummies could work as instruments for the 

cumulative development of local wind energy, theoretically; however, I find they suffer from the 

weak IV problem. To enhance the correlation in the first stage, I take airspace feasibility into 

consideration and construct feasible wind class (FWC) by year dummies as my new instruments. 

FWC is a simple function of multiplying wind power class by non-air-hazard ratio. I define the 

non-air-hazard ratio as the percentage of proposed wind turbine locations that receive 

determinations of “No Hazard to Air Navigation” based on the information provided by the Federal 

Aviation Administration (FAA). The development of wind energy will be largely restricted in 

areas with high likelihood to receive determinations of “Hazard to Air Navigation”, even though 
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these areas may also have high wind potential. The basis for all determinations is aeronautical 

study findings. The airspace feasibility considers conditions far above the ground level and 

therefore provides plausibly exogenous variation with respect to agricultural activities.  

I find strong evidence that the growth of wind energy has significant positive effects on nearby 

soybean and corn yields, and moreover, the marginal effects tend to diminish as the density of 

wind generators becomes higher. In particular, given an additional 50 MW of wind capacity 

installed in the same county, my preferred estimates from the IV approach indicate that soybean 

and corn yields increase by roughly 0.89 and 2.9 bushels per acre, respectively, based on the level 

analyses, or by 1.3 and 2.4 percent, respectively, from the log-linear models. These estimated 

effects on crop yields are robust to different specifications and moderately larger than the estimates 

from previous literature (e.g., Kaffine 2019) based on county-level data and reduced-form 

strategies without addressing potential endogenous threats.  

I then investigate possible mechanisms that could lead to the increases in neighboring crop 

yields. One possible channel is through changes in local climate induced by the operation of sizable 

wind farms. Using fine-scale weather data conducted by Schlenker and Roberts (2009), I 

implement a simple difference-in-differences analysis to test the microclimate effects of wind 

turbines at the 2.5-by-2.5-mile grid level. Another possible explanation is from the perspective of 

farm input or operation changes. One potential concern is that farmers may adjust agricultural 

practices based on their own observations, like crop growth level or pest damages, even without 

knowing any possible causal connections with wind turbines. Another concern is that landowners 

receive lease payments from wind farms, and thus may expand production or purchase additional 

farm inputs. FBFM data have detailed information on farm operating expenses, which provide a 
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unique opportunity for me to directly test whether farmers change their operations after the 

installation of a wind farm nearby. 

With the help of farm-level observations, I find that crop acreage and per acre farm operating 

expenses do not significantly change on farms located close to installed wind turbines. On the 

other hand, I find evidence that sizable wind farms have significant effects on the local climate, 

and therefore these local meteorological variables that are commonly used as right-hand-side 

control variables in existing literature, including growing degree days, extreme degree days, and 

precipitations, are endogenous. In particular, the growing season extreme degree days in grids 

close to a sizable wind farm after its installation decrease by about 2.2 to 2.6 percent. In summary, 

my results suggest that the microclimate effects induced by the operation of wind turbines are 

likely resulting in higher neighboring crop yields. 

In addition, I further explore the net impacts of nearby wind turbine arrays on farm returns. 

My results indicate that 50 MW of new wind capacity built in the same county raises crop returns 

by $12.0 per acre or 1.7 percent equivalently, which is right in between the estimated yield effects 

on soybeans and corn.1 Furthermore, it is likely that farmers are expanding production and using 

more inputs, if the net farm incomes, which is defined as the value of farm production less total 

operating expenses and depreciation, do not change when yields and crop returns go up after the 

installation of wind turbines nearby. However, my results suggest that most of the benefits from 

the yield increases are realized through higher labor and management returns, though the effects 

of wind energy on crop yields seem modest. These findings are consistent with the insignificant 

estimates on operating expenses and further point to the induced microclimate effects. In 

                                                            
1 Crop returns are defined by FBFM (Krapf et al., 2017) as: 
Crop returns are the sum of grain, seed, and feed sales; the value of homegrown seed used; the value of all feed fed 
(except milk); government farm program payments received and accrued; crop insurance payments received and 
accrued; and the change in value for feed and grain inventories, less the value of feed and grain purchased. 
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particular, under the same conditions as above, my estimates show that net farm income increases 

by $6.84 per acre or 3.7 percent, management income increases by $6.23 per acre or 12.5 percent, 

and annual per operator labor and management income increases by $23,858 or 26.0 percent.2 

These estimates strongly imply that the induced positive effects of wind energy can improve 

farmers’ welfare.  

Given the corn and soybean price and harvested acreage in 2017, these estimates imply an 

annual increase of $50.5 million in total crop returns or $28.8 million in total net farm income in 

Illinois alone with an additional well-dispersed 1,000 MW of wind capacity, or equivalent to a 23 

percent increase, installed within the state. Even with these non-negligible aggregate effects, the 

policy implications can be subtle. On one hand, landowners and wind energy companies can fully 

internalize the local impacts on the croplands where turbines are standing through the bargaining 

and leasing process, as long as both parties are fully aware of all possible positive and negative 

externalities. On the other hand, the microclimate effects of wind turbines and their positive 

impacts on crop yields can extend far beyond farm boundaries or even county borders. Therefore, 

policymakers may want to consider these positive spillovers to neighboring areas, along with other 

possible externalities of wind energy, when updating both agricultural and renewable energy 

policies.  

                                                            
2 Farm returns are defined by FBFM (Krapf et al., 2017) as: 
Net farm income is the value of farm production, less total operating expenses and depreciation, plus gain or loss on 
machinery or buildings sold. Net farm income includes the return to the farm and family for unpaid labor, the interest 
on all invested capital, and the returns to management. 
Management return is the residual surplus after a charge for unpaid labor and the interest or land charge on capital 
are deducted from net farm income. 
Labor and management income per operator is total net farm income, less the value of family labor and the interest, 
including net rent, charged on all capital invested. This figure, as the residual return to all unpaid operators’ labor and 
management efforts, is divided by the months of unpaid operator labor and multiplied by 12 to reflect income for one 
operator on multiple-operator farms. 
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This paper contributes to a large and growing literature on the externalities of wind energy, 

and even renewable energy more broadly.3 The economic literature has studied emission and 

pollution abatement from renewable energy (e.g., Chiang et al. 2016; Cullen 2013; Kaffine, McBee, 

and Lieskovsky 2013; Novan 2015), and other papers estimate the external effects of wind turbines 

on the value of nearby properties since wind turbines generate visual disamenities and noise (e.g., 

Dröes and Koster 2016; Gibbons 2015; Jensen, Panduro, and Lundhede 2014; Lang, Opaluch, and 

Sfinarolakis 2014; Vyn and McCullough 2014). Moreover, recent studies investigate the 

externalities of wind energy on various outcomes, for instance, costs of wake effects from 

uncoordinated wind energy development (Lundquist et al. 2019), impacts of low-frequency noise 

on human health (Zou 2018), and net effects on crop yields (Kaffine 2019). In addition, this paper 

brings a new perspective, from wind energy, on the interactions among farm operations, 

agricultural policy, and renewable energy policy, which traditionally largely concentrate on the 

impacts of bioenergy and ethanol production on crop production, farmland value, land-use 

changes, and Conservation Reserve Program (CRP) enrollment decisions (e.g., Blomendahl, 

Perrin, and Johnson 2011; Henderson and Gloy 2009; Miao 2013; Motamed, McPhail, and 

Williams 2016; Peckham and Kropp 2015).  

 

2. Background 

This section briefly introduces the basic scientific mechanism underlying the microclimate effects 

of wind turbines. I then discuss reasons why scientific literature has not achieved a consensus 

                                                            
3 For further reference, Dai et al (2015) and Zerrahn (2017) provide comprehensive literature reviews with more details 
on wind power and externalities from multiple perspectives, not limited to economic papers.  
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regarding the net effects of wind farms on agricultural production, and the advantage of using an 

econometric approach. 

Existing scientific literature has revealed the impacts of large wind farms on meteorology and 

possibly on climate, especially at local and regional scales. An array of wind turbines reduces wind 

speed and creates turbulence, which can enhance vertical mixing and exchanges of heat, moisture, 

and carbon dioxide in the wake of rotors when harvesting energy from the atmosphere (Adkins 

and Sescu 2018; Baidya Roy, Pacala, and Walko 2004; Rajewski et al. 2014). A typical scale of 

the length of wind turbine wakes can reach around 20 km and is not sensitive to the size of the 

wind farms or to the local climate conditions (Abbasi and Abbasi 2016). Analyses based on model 

simulations also show that the impacts of wind turbines can extend to the scale of 10 km or even 

up to more than 50 km downwind (Abbasi and Abbasi 2016; Fitch et al. 2012; Fitch, Lundquist, 

and Olson 2013; Lundquist et al. 2019; Rajewski et al. 2013).  

Many studies have tried to examine the regional climate impacts of wind turbines via 

numerical simulation models, though enormous uncertainties are unavoidable when modeling 

interactions between wind turbines and the atmospheric boundary layer (Adams and Keith 2007; 

Adams and Keith 2013; Baidya Roy, Pacala, and Walko 2004; Baidya Roy 2011; Barrie and Kirk-

Davidoff 2010; Cervarich, Roy, and Zhou 2013; Fitch, Lundquist, and Olson 2013; Keith et al. 

2004; Wang and Prinn 2010). Remote sensing based on data from satellites or drones is an effective 

alternative approach to detect and quantify the local or mesoscale meteorological changes due to 

wind farm operations (Adkins and Sescu 2018; Harris, Zhou, and Xia 2014; Slawsky et al. 2015; 

Walsh-Thomas et al. 2012; Zhou et al. 2012; 2013). For instance, Zhou et al. (2013) find a 

consistent warming effect of 0.31-0.70 K at nighttime in all seasons during the study period based 

on Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 
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data. Only a few field experiments have measured air temperature, surface fluxes, and other 

variables from on-shore wind plants. Baidya Roy and Traiteur (2010) use observations from a 

wind farm in California and indicate that the wind farm warms near-surface air temperatures 

downwind during the night and early morning hours, but also leads to a cooling effect during the 

day. Smith et al. (2013) collect in situ data from a wind farm in the Midwest and find a strong 

warming effect at night and significant impacts on downwind wind speed and turbulence intensity. 

Similar phenomena have also been discovered by a comprehensive field campaign in Iowa called 

Crop Wind Energy Experiment (CWEX), which attempts to understand the impacts of wind 

turbines on the microclimate over cropland (Rajewski et al. 2013; 2014; 2016; Rhodes and 

Lundquist 2013).   

Since wind farms are often located on agricultural lands in the Midwest, large wind plants can 

potentially affect crop growth through their microclimate effects (Adkins and Sescu 2018; 

Armstrong et al. 2014; Baidya Roy and Traiteur 2010; Harris, Zhou, and Xia 2014; Rajewski et al. 

2013; Xia et al. 2016; Zhou et al. 2012). Unfortunately, current scientific literature has not 

achieved a consensus regarding the net effects of wind farms on crop or vegetation growth, while 

some studies even find a limited or inhibiting effect (Tang et al. 2017; Xia and Zhou 2017). There 

are three major challenges. First, changes in heat, moisture flux, and carbon dioxide caused by 

large wind farms may have both positive and negative effects on crop growth, and the direction of 

the overall effect can vary across specific locations or weather conditions. Reports from the CWEX 

indicate that the warming effect at night may increase plants’ respiration, while the enhanced 

fluxes of carbon dioxide and water contribute to transpiration and photosynthesis in the daytime 

(Rajewski et al. 2014). Second, the signs and magnitudes of local climate changes due to wind 

turbines depend on many specific and complicated factors and conditions, not to mention the 
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interactions between the characteristics of turbines and the crop surface (Rajewski et al. 2014; 

2016).4 Along with uncertainties from cultivar, soil texture, and management techniques, short-

term observations from a limited number of observation points in these expensive field 

experiments may not obtain enough statistical power to distinguish true effects from the noisy 

background. Third, large wind farms may affect local ecosystems and productivity through other 

direct or indict channels besides microclimate effects, such as low-frequency noise, bird and bat 

mortality or disturbance, soil erosion, visual pollution, and path planning for tractors (Boyles et al. 

2011; Dai et al. 2015; Moravec et al. 2018; Zerrahn 2017). More interestingly, another study shows 

that wind-farm energy output increases by 14 percent when the crop underneath is switched from 

corn to soybeans (Vanderwende and Lundquist 2016).  

To deal with these challenges, Kaffine’s (2019) paper uses a reduced-form, econometric 

approach to identify the net impact of wind farms on neighboring crop yields, and takes advantage 

of the large number of observations to overcome the lack of representativeness issue. That study 

employs county-level crop and wind capacity data in the U.S. and finds that corn yields increase 

by about 1 percent with an additional 100 MW of wind capacity installed in the same county.  

 

3. Data  

This study assembles a unique and comprehensive dataset by combining FBFM farm-level 

production and expenses data, geographic locations and characteristics of wind turbines mainly 

from the American Wind Energy Association (AWEA), airspace obstruction determinations from 

the FAA, wind potential information from the National Renewable Energy Laboratory of the U.S. 

                                                            
4 Rajewski et al. (2014, 2016) indicate that the magnitude and locations of local climate changes are affected by the 
turbine characteristics (hub height, rotor diameter, blade style, blade pitch angle, and model-specific thrust and power 
coefficients) and the ambient conditions (atmospheric stability, wind direction, wind speed, and moisture conditions).  
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DOE, and meteorological variables conducted by Schlenker and Roberts (2009) based on the 

PRISM climate data. 

 

3.1 Farm data 

My primary farm-level variables are from certified longitudinal data collected by the FBFM 

Association and the University of Illinois from 2003 to 2017. FBFM data include more than 90 

years of farm business records and have long been used in many studies in the field of agricultural 

economics (e.g., Barry, Bierlen, and Sotomayor 2000; Franken, Pennings, and Garcia 2014; Garcia, 

Sonka, and Yoo 1982; Garcia et al. 1986; Woodard and Verteramo-Chiu 2017). The dataset used 

in this study includes annual corn and soybean yields, farm returns, farm operating expenses, total 

operating acres, share of land-use for each crop, land ownership (owned, crop shared, and cash 

rented), farm types, percentage of land irrigated, percentage of feed fed, and soil productivity rate 

for each farm. Unfortunately, FBFM data only have the geographic location information of farms 

available at the county level, but do not reveal further details of farms’ specific locations.  

The FBFM data contain annual accounting and production records for more than 5,000 

participating farms in recent years, which is about one out of every five Illinois commercial farms 

with over 500 acres or total farm sales over $100,000 (Franken, Pennings, and Garcia 2014). About 

half of the total FBFM samples are qualified as certified data and released for this study. The 

FBFM educational service is available to all agricultural producers in Illinois for a fee, and farmers 

participate in this business analysis program voluntarily (Krapf, Raab, and Zwilling 2017).  

Since producers voluntarily choose to participate in the FBFM service every year, one might 

be concerned about the selection effects on enrollment related to the installation of wind turbines. 

Appendix table A1 lists the retention rates, defined as the percentage of this year’s farms that also 
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took the survey last year. The overall average retention rate is about 80 percent for all farms, and 

81 percent for farms in counties with installed wind capacity as of the end of 2017.5 The retention 

rate differences between farms in panel A and B are relatively small compared to yearly changes. 

I do not find evidence that implies systematic selection in FBFM enrollments due to the 

development of wind energy.  

 

3.2 Wind turbine data 

The wind turbine data mainly come from the database managed by the AWEA, which provides 

specific geographic location, turbine model, capacity, and online year and month for each 

commercial wind turbine. I then merge the AWEA dataset with two other datasets, the United 

States Wind Turbine Database (USWTDB) from the U.S. Geological Survey (USGS) and the U.S. 

DOE and the Wind Turbine Location Data from the FAA, based on the spatial location of each 

turbine to provide complementary information.  

 Since the FBFM data do not reveal the location information of farms below the county level, 

the wind development variables need to be constructed as a county-by-year panel so that both 

datasets can be merged. One of the primary explanatory variables generated in this study is wind 

capacity density (MW/square mile), which equals the total capacity of all installed wind turbines 

in each county divided by the county’s area, the same as in Kaffine’s (2019) paper. However, since 

many wind farms are located near county borders, the local impacts of wind farms can easily 

extend to neighboring counties, and therefore cannot be captured by wind capacity density. To deal 

with this spatial spillover effect, I develop another explanatory variable for wind energy 

                                                            
5 Note that an 80 percent retention rate does not mean that only 64 percent of farms would remain after two years or 
51 percent after three years. Although only 454 farms have complete records for all years from 2003 to 2017, most 
farms occasionally skip one or two years but reenter the FBFM system later. 
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development, wind area ratio, which is defined as the percentage of the county area that is within 

a certain distance (e.g., 10 km or 25 km) of a sizable wind farm in a given year. To avoid including 

isolated wind turbines, here “sizable” means at least 10 wind turbines.6 In figure 1, the dark dots 

are existing wind turbines in and around the state of Illinois at the end of 2017; the inner buffer 

areas are within 10 km of a sizable wind farm, while the outer buffer areas are within 25 km of a 

sizable wind farm. Ideally, the buffer areas should be on the downwind side of wind farms if the 

impacts come from microclimate effects exclusively. However, the differences are likely 

attenuated, since 1) modern large wind turbines can rotate actively to face the wind direction; 2) 

both wind development variables wind capacity density and wind area ratio are aggregated at the 

county level and therefore not that sensitive to shifts of buffer areas; and 3) wind turbines may 

affect agricultural activities through other channels, which may not necessarily be on the 

downwind side.    

 The Wind Turbine Location Data from the FAA also provide determination and status 

information of proposed wind turbine locations from Obstruction Analysis/Airport Airspace 

Analysis (OE/AAA). As shown in appendix figure A1, FAA decides whether a potential location 

of wind turbine is hazardous to air navigation. If so, then further construction is not allowed. I 

calculate simple non-air-hazard ratios as essential components in my instruments, which equal 

the number of applications that receive determinations of “No Hazard to Air Navigation” divided 

by the total number of completed applications in each county before any given year. Details of my 

IV approach are described in the empirical strategy section.  

                                                            
6 Although I have to arbitrarily choose a threshold number of wind turbines to define what a sizable wind farm is, it 
turns out that the corresponding buffer areas are not at all sensitive to any threshold number from 5 to 16.  
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3.3 Weather and wind potential data 

I use the Fine-Scale Daily Weather Data for the Contiguous United States conducted by Schlenker 

and Roberts (2009) based on the PRISM climate data from 1998 to 2017. The raw data files provide 

daily minimum and maximum temperature and precipitation at the 2.5-by-2.5-mile grid level. 

Following previous literature, I construct growing season precipitation as the cumulative depth in 

mm of water from April 1 to September 30. Similarly, growing degree days (GDD) are the number 

of degree days between 10°C and 30°C, and extreme degree days (XDD) are the number of degree 

days above 30°C, during the same agricultural growing period every year.  

 Wind power class data are from the National Renewable Energy Laboratory of the U.S. DOE. 

All areas are designated into seven classes, as illustrated in appendix figure A2. Generally 

speaking, Class 1 areas have the least potential for the development of wind energy, while areas 

designated Class 3 or higher have adequate wind resources for utility-scale wind turbine 

applications. Class 2 areas are marginal for commercial wind turbines. Note that wind power class 

is a time-invariant variable, and county-level averages of wind power class have been calculated 

for further application. 

 

3.4 Summary statistics 

Table 1 provides summary statistics for selected important variables in odd years at the farm level 

with simple identical weights. Panel A includes all farms, while panel B only includes farms from 

counties with wind capacity installed by the end of 2017. Both crop yields and wind energy have 

achieved remarkable growth during the same period from 2003 to 2017. Meanwhile, the number 

of farms participating in the FBFM declines in general, which is consistent with the decrease of 

the total number of farms in Illinois, but with a very similar trend in counties with or without wind 
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energy development. As a natural consequence, the average acreage of farms increases in both 

panels.  

 Another interesting fact reflected by the summary table is that farms located close to wind 

turbines have relatively higher soil productivity rates than the state average, and therefore, higher 

yields on both corn and soybeans as well. Figures 2(a) and 2(b) provide box plots for the soybean 

and corn yields of farms located in counties with different exposure to wind energy by the end of 

2017, marked as “no exposure” if the wind area ratio (25 km) in 2017 is 0 percent, “less exposure” 

if between 0 and 60 percent, and “more exposure” if above 60 percent. Despite the fact that crop 

yield data are almost always full of noise, figures 2(a) and 2(b) illustrate roughly a parallel 

movement pattern of the yield trends among farms in all three wind energy exposure categories. 

Although the gap in soil productivity rate between farms in panels A and B remains roughly the 

same throughout the study period and it is hard to believe that energy companies intend to build 

wind turbines on better agricultural fields, any analysis that attempts to estimate the effects of wind 

farms on crop yields will need to address potential challenges from spatial spillovers, unobservable 

time-varying factors or unknown channels along with the existing trends of yield increase and farm 

expansion, especially when the wind-energy-affected buffer areas, as shown in figure 1, are 

obviously geographically clustered in Illinois.  

 

4. Empirical Strategy 

This section introduces a typical ordinary least squares (OLS) strategy first. Next, I discuss two 

threats to identification from measurement error and omitted-variable bias and then suggest an 

innovative IV approach to identify the net effects of wind energy on neighboring farm outcomes. 
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4.1 OLS approach 

The econometric strategy in this study is a fixed-effects model, which follows Kaffine (2019) and 

Deschênes and Greenstone (2007). The empirical regression model used to estimate the effects of 

wind farms on crop yields is:  

௧ݕ ൌ ߙ  ߚ ܹ௧  ߠ ܺ௧  ௧ߛ  ߳௧,  (1)

where ݕ௧ is the per acre soybean or corn yield on farm ݅ in county ܿ in year ݐ. Since the farm 

location is only available at the county level, my primary explanatory variable indicating the 

development of wind energy, ܹ௧, needs to be aggregated at the county level rather than the farm 

level. ܹ௧ can be either wind capacity density as megawatts of wind capacity installed per square 

mile in the county or wind area ratio defined as the percentage of area that is within a certain 

distance (10 or 25 km) of a sizable wind farm in county ܿ in year ݐ. Farm fixed-effects are ߙ, 

which control time-invariant farm characteristics, such as topographic and geographic conditions. 

Year fixed-effects ߛ௧  absorb common annual shocks to yields over time, such as technology 

improvement. Besides fixed-effects controls, the vector of time-variant control variables at the 

farm level ܺ௧  includes percentage of land irrigated, percentage of feed fed, share of land 

ownership (owned, crop shared, and cash rented), as well as farm size and soil productivity rates 

and their quadratic terms. All regression analyses are weighted based on the number of operating 

acres of the corresponding crop. Also, I only use farms that were in the system at least once before 

the installation of wind turbines nearby.  

 The identifying assumptions of the OLS approach are: 1) crop yields on farms from wind-

energy-affected counties would have parallel trends as those that are far away from sizable wind 

farms in a counterfactual world with no wind turbines installed, and 2) there are no unobservable 



‐ 17 ‐ 
 

or uncontrolled for variables that affect agricultural production and are correlated with wind energy 

development. 

One might be concerned about the aggregation error when county averages of wind capacity 

density and wind area ratio are used since the truth of these variables at the farm level is not 

available. Unlike the classical measurement error that is uncorrelated with the truth, here the error 

is uncorrelated with the aggregated averages but necessarily correlated with the true values 

(Kirwan and Roberts 2016). Therefore, supposing there is no other source of endogeneity, within 

estimators using county averages will still be consistent in panel data.7  

 

4.2 Threats to identification   

To identify the effects of the development of wind energy on local crop yields and farm operation 

activities consistently, I need to address two threats to identification: omitted-variable bias and 

measurement error.   

Some obvious control variables, such as farm operating expenses and local meteorological 

variables, are potentially endogenous, even though they have important explanatory power for 

agricultural outcomes. Farm operation costs may be endogenous through two possible channels. 

First, farmers may use the lease payments from wind energy companies to purchase additional 

production inputs like land, labor, capital, or fertilizer (Kaffine 2019). Second, farmers may change 

                                                            
7 To see this, we have ܹ௧ ൌ ܹ௧   ௧, where ܹ௧ is the true wind development variable on farm ݅ in county ܿ inݑ
year ݐ, and ݑ௧ is the measurement error. Unlike the classical measurement error assumption that ܿݒሺ ܹ௧, ௧ሻݑ ൌ
0 , here the measurement error ݑ௧  is correlated with ܹ௧  but uncorrelated with the average ܹ௧ , that is, 
ሺݒܿ ܹ௧, ௧ሻݑ ൌ 0. Assuming no other endogeneity and the distribution of ߳௧ is i.i.d with mean zero and variance 
௧ݕ ఢଶ, we can rewrite the model asߪ ൌ ߙ  ߚ ܹ௧  ௧ߛ  ߳௧ ൌ ߙ  ߚ ܹ௧  ௧ߛ  ߳௧ െ  ௧. Therefore, in panelݑߚ
data, within estimators using county average ܹ௧  will be consistent since ܿݒሺ ܹ௧, ߳௧ െ ௧ሻݑߚ  is zero and 
controlling individual and time fixed-effects can eliminate biases from the nonzero correlations ܿݒሺ ܹ௧,  ሻ andߙ
ሺݒܿ ܹ௧,  .௧ሻߛ
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their behaviors based on their own observations, like crop growth level or pest damages, though 

farmers may not establish causal links between wind turbine installation and certain changes they 

have observed. 8  Moreover, since wind turbines can affect local climate, as discussed in the 

background section, they may also change common weather control variables used in agricultural 

models like GDD, XDD, or precipitation during the growing season. However, dropping these 

controls in farm operations and local climates may bring omitted-variable bias. 

In addition, as mentioned in the data section, areas with higher wind capacity density in Illinois 

happen to have better soil quality and higher average yields, and the wind-energy-affected areas 

are geographically clustered. One possible concern is that the location selection of wind farms may 

be correlated with unobservable time-varying local characteristics that can affect agricultural 

activities. For instance, during the same study period from 2003 to 2017, the adoption of 

genetically engineered (GE) seeds has expanded from 77 to 93 percent for soybeans and from 28 

to 92 percent for corn in Illinois. Additionally, there have been shifts among different types of GE 

technology. If the GE adoption decision of farmers were correlated with factors that might affect 

wind development such as soil type, local climate, and/or local farmers’ attitudes to new 

technology, it would bias the estimates.  

Another source of bias is measurement error. An ideal indicator for the development of wind 

energy should reflect both the density of installed capacity and the distance from a sizable wind 

farm at the local level. Unfortunately, neither wind capacity density nor wind area ratio is perfect. 

As shown in figure 1, many wind farms are located near county borders and only on one side in 

particular, but the effects of wind turbines will not be blocked by the administrative boundaries. 

By definition, wind capacity density only increases in the county where the wind farm is post-

                                                            
8 Mill (2015) indicates that landowners generally do not think that wind energy changes local weather patterns based 
on a survey.  
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installation but remains unchanged in the adjacent counties. As a result, failing to deal with the 

measurement error from spatial spillovers could result in a significant underestimate of the true 

impact of wind farms. On the other hand, wind area ratio takes the spatial spillovers into 

consideration roughly by allowing adjacent counties to be affected. However, it cannot effectively 

reflect the increase of wind capacity in nearby locations as long as the total number of wind 

turbines is above the threshold used to define “sizable” wind farms (10 turbines here).9 Moreover, 

the effects of wind turbines on local climate are probably not evenly distributed within a perfectly 

round buffer area, which creates another type of measurement error.  

 

4.3 IV approach  

In order to address these potential threats to identification discussed above, I need an IV approach 

designed to leverage exogenous variation that is essential to the development of wind farms but 

does not affect agricultural production. As a natural endowment, wind potential measured by wind 

power class is a key driver for the development of wind energy. It is also exogenous and time-

invariant, at least in the short term, in a given location, which implies that the farm fixed-effects 

can largely capture its impacts on agricultural production in general. In theory, I could use 

interactions of wind power class and year dummies as instruments for cumulative local wind 

development, given that the wind energy technology advancement and state-wide renewable 

energy policy changes across years are exogenous to agricultural production. However, I find these 

instruments suffer from the weak IV problem. There is another concern that the effects of windy 

conditions on crop growth could possibly vary year by year. For instance, wind can reduce the 

                                                            
9 Since the associated buffer areas with 25 km or 10 km are much larger than the footprints of the wind farms, the 
buffer area of a dense array of 40 wind turbines is only slightly larger than that of a wind farm with 20 turbines. Note 
that this problem has nothing to do with the choice of the threshold used to define “sizable wind farms”. 
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chances of disease by drying out plants faster in a wet season, or can remove water too quickly for 

plants to replace in a particularly hot season.  

To enhance the correlation in the first stage and eliminate potential confounding effects of 

wind power class from alternative channels mentioned above as much as possible, I take the 

airspace feasibility into consideration. According to the FAA, all air-hazard decisions are based 

on the aeronautical study findings “as to the extent of adverse physical or electromagnetic 

interference effect upon navigable airspace or air navigation facilities” before any real construction 

or adjustment, and therefore, provide plausibly exogenous variation with respect to agricultural 

activities. 10 FAA determinations can prevent wind turbines from standing in certain areas, even if 

they have high local wind potential. Therefore, integrating non-air-hazard ratio with wind power 

class can largely strengthen the instruments in the first stage.  

I construct the feasible wind class, defined as ܥܹܨ௧ ≡ wind	power	class ∗ 

non‐air‐hazard	݅ݐܽݎ௧, where wind	power	class is the area weighted average of wind power 

class, which measures available wind resources for the development of wind energy, in county ܿ. 

Another component, non‐air‐hazard	݅ݐܽݎ௧ , which measures the restriction on wind turbine 

construction due to airspace feasibility, is defined as the ratio of the number of projects that receive 

determinations of “No Hazard to Air Navigation” divided by the total number of proposed wind 

turbine locations that have completed the aeronautical studies by FAA in county ܿ before year ݐ. 

                                                            
10  FAA Order JO 7400.2M - Procedures for Handling Airspace Matters: Chapter 7, 7-1-1: “The basis for all 
determinations must be on the aeronautical study findings as to the extent of adverse physical or electromagnetic 
interference effect upon navigable airspace or air navigation facilities.”  
Also, Chapter 7, 7-1-3: “Issue a ‘Determination of Hazard’ (DOH) if the structure would have or has a substantial 
adverse effect; negotiations with the sponsor have been unsuccessful in eliminating the substantial adverse effect; and 
the affected aeronautical operations and/or procedures cannot be adjusted to accommodate the structure without 
resulting in a substantial adverse effect.”  
Available at (on 06/26/2019): https://www.faa.gov/documentLibrary/media/Order/7400.2M_Bsc_dtd_2-28-19.pdf 



‐ 21 ‐ 
 

To account for cumulative development of wind energy, the first-stage regression uses FWC by 

year dummies as the instruments to estimate the wind development variables as: 

ܹ௧ ൌ ߙ
ଵ  ∑ ௧ܥܹܨ௧ߩ ∗ 1ሺt ൌyearሻ௬  ଵߠ ܺ௧  ௧ଵߛ  ߳௧

ଵ , (2a)

and then uses the predicted values of ܹ௧ in the second-stage regression as: 

௧ݕ ൌ ߙ  ߚ ܹ௧  ߠ ܺ௧  ௧ߛ  ߳௧. (2b)

Using this strategy, the local average treatment effect will come from the differences in the 

difficulty of developing wind energy among counties due to local wind potential and airspace 

feasibility across years, given the same technology advancement level and overall renewable 

energy policy environment in any particular year. The identifying assumption is that my 

instruments can largely determine the installed capacity of wind turbines and exclusively affect 

agricultural activities through the channel of wind energy, and also requires parallel trends of the 

reduced form and no other confounding factors.  

 In my main specification, I include farm characteristic variables, like farm size, percentage of 

land irrigated, and share of land ownership, which could be affected through the potential income 

channel from royalties received from wind energy companies. As a robustness check, I use only 

year and farm fixed-effects in addition to the wind development variables in one specification, 

which eliminates the chance of having any endogenous control variables. Next, I allow for more 

flexible controls with the interactions between farm characteristics and year dummies, which 

provides a robustness test of parallel trends, because if there is anything time-varying between 

farms in observable ways, that might also imply changes in unobservable ways.  
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4.4 Mechanism investigation  

Following the discussion in the background section with existing scientific literature, large wind 

farms could affect local meteorological variables. Using the weather dataset conducted by 

Schlenker and Roberts (2009) based on the PRISM data, I implement a simple panel regression 

model to test the microclimate effects of wind turbines at the 2.5-by-2.5-mile grid level: 

௧ݕ ൌ ߙ  ߚ ܹ௧  ௧ߛ  ߳௧, (3)

where ݕ௧ can be GDD, XDD, or precipitation during the growing season of grid ݃ in year ݐ. ܹ௧ 

indicates whether the centroid of grid ݃ in year ݐ is within a certain distance (10km or 25km) of a 

sizable wind farm that has been built. Since the weather data provide exact geographic location 

information for each grid, here the primary explanatory variable ܹ௧ does not need to be adjusted 

at the county level. Location and year fixed-effects are controlled by ߙ and ߛ௧, respectively. To 

prevent misinterpretation, note that the grid-level observations are actually weighted averages 

from the closest 10 weather stations rather than direct local measurements due to the nature of the 

PRISM data files. The coefficients estimated from the above regression analysis are very likely to 

be underestimated, and therefore, the magnitudes of my results cannot be directly interpreted.11 

However, if results do reveal an effect, it is strong evidence that wind farms affect local climate. 

The purpose of this analysis is to test if sizable wind farms can affect weather variables, like GDD, 

XDD, and precipitation during the growing season. If so, these meteorological variables are 

endogenous and would confound the estimated effects of wind farm operations on crop yields if 

these control variables were included.  

                                                            
11 Note that the measurement error from using the weighted average of observations from closest 10 weather stations 
does not satisfy the classical measurement error assumption as an i.i.d., since it is probably correlated with the wind 
development variable ܹ௧. Therefore, it is endogenous, even though it comes from the left-hand side of the regression.   
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Since farmers might use their land lease payments to increase operating acreage or purchase 

additional inputs, my farm-level dataset provides a unique opportunity to directly test whether 

farm operation outcomes are affected by the development of wind farms. For this, I use the same 

2SLS approach as described in equations (2a) and (2b). The wind energy development variable, as 

well as farm and year fixed-effects, remain unchanged. However, now the dependent variable ݕ௧ 

can be total nonfeed costs, fertilizer costs, crop costs (sum of fertilizer, pesticide, and seed costs), 

power and equipment costs, building costs, labor costs, crop returns, net farm incomes, and 

management returns from farm ݅ in county ܿ in year ݐ. Since typical farms rotate crops yearly, 

farm time-variant control variables ܺ௧ also include the percentage share of land used for each 

crop on farm ݅ in county ܿ in year ݐ in addition to other control variables used for the analysis on 

crop yields.  

 

5. Results 

This section begins with results from the baseline specification, and then provides robustness 

checks. Next, I test the validity of my IV approach and perform a falsification test. I further 

investigate two possible mechanisms that could lead to my findings. Finally, I estimate the effects 

of wind energy development on farm returns. 

 

5.1 Effects on crop yields  

Table 2 reports the primary results of the effects of wind farms on neighboring crop yields. As 

soybeans and corn are two major crops in Illinois, panel A summarizes the results for soybeans 

and panel B for corn. OLS estimates based on equation (1) are in the first four columns, and 2SLS 



‐ 24 ‐ 
 

estimates outlined by equations (2a) and (2b) are in the last four columns. Moreover, odd-

numbered columns (1a), (1b), (3a), and (3b) report estimates from regressions on per acre yields 

of corn and soybeans, while the rest of the columns are based on log-linear models.  

All the specifications in table 2 control for year fixed-effects, farm fixed-effects, and farm 

characteristics. Farm observations from different years are probably serially correlated, even after 

controlling for the fixed-effects. Moreover, agricultural activities on farms close to each other 

could have spatial autocorrelation due to unobservable spatial or social factors and policy 

similarities. The typical approach is to use the biggest or most aggregated clusters if possible 

(Abadie et al. 2017; Cameron and Miller 2015). Therefore, the standard errors are clustered at the 

county level in table 2.  

My results show that all OLS and 2SLS coefficients of both wind capacity density and wind 

area ratio (25 km) are positive. Central estimates from 2SLS are larger than those from OLS and 

all are significant at the 5 percent level or below. In panel A, these estimated effects of wind energy 

on soybean yields are positive and significant at the 1 percent level regardless of the level or log-

linear models. In panel B, only 2SLS coefficients on wind development variables for corn yields 

are significant at the 5 percent level, while OLS estimates are positive and within the 95 percent 

intervals of the 2SLS estimates, though not significant.  

Note that the unit of wind capacity density is megawatts per square mile, as defined in Kaffine 

(2019). However, this unit is actually very large, since the overall wind capacity density in Illinois 

as of the end of 2017 is only 0.078 MW per square mile with 4,332 MW of wind capacity installed. 

The county with the highest wind capacity density reaches 0.526 MW per square mile, with 548 

MW of installed wind capacity. To interpret the coefficients of all column (a)s, I transfer the unit 

to a more reasonable marginal magnitude. Since the average county area in IL is 544.3 square 
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miles, an additional 50 MW of wind capacity installed within a county means a 0.092 MW per 

square mile increase in wind density.12 Given this relationship, a new wind farm with 50 MW of 

wind power capacity increases soybean yields by 0.89 bushels per acre and corn yields by 2.9 

bushels per acre based on column (3a), or raises soybean and corn yields by 1.3 and 2.4 percent, 

respectively, according to column (4a), within the same county. The estimates on wind area ratio 

(25 km) provide another perspective to look at the effects. From column (4b), we can observe that, 

with an additional 1 percent of county area located within 25 km of a sizable wind farm, average 

soybean yield increases by roughly 0.07 percent, and corn yield increases by about 0.11 percent. I 

should emphasize that the main estimates in table 2 are only valid at the margin, and I will test the 

concavity of the effects in the next section to help with interpretation and extrapolation. 

An essential identifying assumption underlying both the OLS and the IV approaches is that 

crop yields on farms located either close to or away from sizable wind farms have common yield 

trends before the installations of wind turbines. As mentioned above, areas that experience wind 

energy development happen to have relatively better soil quality and therefore relatively higher 

average yields, though it is hard to believe that energy companies intend to select better agricultural 

lands to build wind turbines. However, the obvious geographic cluster pattern of areas affected by 

wind energy causes a concern that they might be on a different long-run trend of crop yields than 

other areas apart from the effects induced by wind energy. Although figures 2(a) and 2(b) illustrate 

parallel movements of crop yields in general, I test the common pre-trends assumption formally 

with a flexible difference-in-differences specification: 

௧ݕ ൌ ߙ  ∑ ఛ߱௧ߚ
ఛିଵ

ఛୀି  ∑ ఛ߱௧ߚ
ఛ

ఛୀଵ  ߠ ܺ௧  ௧ߛ  ߳௧, (4)

                                                            
12 Kaffine (2019) uses the county-level data in the U.S. and does the calculation with an additional 100 MW of wind 
capacity. However, the average county land area in the lower 48 states of the U.S. is 997.6 square miles, and about 
800 square miles for those with corn production according to Kaffine (2019), but only 544.3 square miles in Illinois. 
To be roughly consistent regarding the magnitudes, I use an additional 50 MW of wind capacity instead. 
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where ߱௧
ఛ ൌ 1ሺݐ െ ܶ ൌ ߬ሻ is a dummy variable taking the value of one when the county ܿ is ߬ 

years away from the initial wind development in year ݐ . 13  I estimate relative effects for a 

reasonably wide range of six years prior to and six years post the initial installation of wind turbines, 

and top and bottom code seven years and above prior to and away from the initial exposure. 

I plot the estimated coefficients ߚመఛ and corresponding confidence intervals based on robust 

errors clustered at the county level in figure 3. As one can expect if the parallel trends assumption 

holds, all coefficients for both soybean and corn yields prior to the first wind development remain 

small and insignificant. The positive effects become more obvious after a few years from the initial 

development mainly because there is a time gap between the installation of the first wind turbine 

and the proper operation of the whole wind farm. The estimates of soybean yield are consistently 

large and roughly significant from the second year after the first wind turbine was installed, while 

the coefficients on corn yield vary a little bit, though most of them also become highly positive, 

which could possibly be due to the unbalanced and noisy panel data. These results also partially 

explain why the difference between the OLS and 2SLS estimates for corn yields are larger than 

those for soybean yields.  

 

5.2 Robustness checks  

The 2SLS estimates from table 2 provide suggestive evidence of a positive net effect of sizable 

wind farms on crop yields. Table 3 further checks the robustness of the 2SLS estimates with 

different specifications and controls. The estimates in columns (1a) and (1b) of table 3 only control 

                                                            
13 Here the initial wind development is defined as the year when the first non-isolated wind turbine was installed, or 
the wind area ratio (25 km) became larger than 25 percent even if no single wind turbine was built in the county, since 
I want to get rid of isolated one or two wind turbines and also want to take the spatial spillover effects into 
consideration more or less.  
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for farm and year fixed-effects. The estimates for both soybeans and corn from both columns are 

still significant at the 5 percent level or lower, which show that these results are not being driven 

by potentially endogenous controls. Next, columns (2a) and (2b) in table 3 allow more flexible 

controls for farm characteristics by multiplying them with year dummy variables. Again, the 

estimates from this specification remain almost unchanged, which imply the parallel trends hold 

since unobservable variations between farms are often reflected in observable ways as well. 

 Columns (3a) and (3b) then have farm operations controlled for. Farm inputs are essential to 

crop yields, and controlling them would largely help identify the true impacts of wind farms on 

crop yields through the microclimate or ecosystem effects. However, landowners might expand 

farm production after receiving royalties from wind energy companies. Farmers might also change 

their agricultural practices based on observed changes resulting from the induced effects through 

microclimate or ecosystems without even knowing the causal relationship. The point estimates 

from columns (3a) and (3b) are almost identical to those in the previous columns correspondingly, 

which implies that the farm input channel may only explain the yield increases to a limited extent.  

People may also argue that growing-season GDD and precipitation are important factors that 

can largely determine crop yields. In particular, prior literature often controls both of them, along 

with their quadratic terms, in preferred specifications, and even involves interaction terms of 

weather variables with multiple fixed-effects in some specifications. The remaining two columns 

in table 3 include these meteorological variables as controls. The coefficients on wind development 

variables estimated in these specifications remain in the same direction and are still significant at 

the 5 percent level or lower. The point estimates have modest changes compared to the rest of the 

columns in table 3. However, these weather variables could be endogenous, and therefore, should 

not be included as right-hand side control variables if the microclimate effects caused by wind 
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turbines were the primary mechanism that lead to yield increases. Therefore, in the mechanism 

investigation section later, I will directly examine the effects of wind energy on farm operations 

and meteorological variables. 

As an alternative robustness check, appendix table A2 summarizes the results using the 

dummy indicator 1(Wc0) for the wind development, which takes value one after the first installation 

of wind turbines in county c. Similarly, panel A is for soybeans and panel B is for corn. Column 

(1) only includes year and farm fixed-effects, column (2) further controls for farm characteristics, 

and column (3) adds farm operations on the right-hand side. To absorb any potential alternative 

local trends, I allow each county to have its own linear time trend in column (4). The 2SLS 

coefficients of the dummy wind indicators are positive and significant in all these specifications 

for both crops. The magnitudes of the coefficients remain almost the same in the first three columns 

and even have a modest increase with county-specific linear time trends controlled. 

 If sizable wind farms actually cause the crop yield increases in neighboring areas, the effects 

should be larger in closer areas. To see this, I use a different threshold distance, 10 km, to calculate 

wind area ratio besides the 25 km threshold used in previous tables. Note that wind capacity 

density, wind area ratio (25 km), and wind area ratio (10 km) are actually very different in terms 

of determining which counties have been affected by wind energy. By the end of 2017, 31 counties 

have installed wind capacity but only 19 of them have sizable wind farms. There are 35 counties 

with a positive wind area ratio (25 km) varying from 0.1 to 100 percent, but only 24 counties are 

defined as affected by wind energy based on wind area ratio (10 km), with values varying from 2 

to 50 percent. Although none of these variables measure the impacts of wind energy perfectly, 

estimates from using different wind development variables provide another robustness check. If 

the development of wind farms has causal effects on the crop yields of nearby farms, the estimated 
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effects of wind area ratio (10 km) should be larger than those of wind area ratio (25 km). As shown 

in table 4, the coefficients of wind area ratio (10 km) in column (3) are about double the magnitude 

of those of wind area ratio (25 km) in column (2) for both soybeans and corn, and significant at 

the 1 percent and 5 percent levels, respectively.  

 Finally, to allow for non-linear effects of wind farms on crop yields, columns (4), (5), and (6) 

in table 4 include a corresponding quadratic term of wind capacity density, wind area ratio (25 

km), and wind area ratio (10 km), respectively. All coefficients of the squared terms of wind energy 

variables are negative in both panels for soybean and corn yields, which suggests a concave 

relationship between the wind energy development level and its effects on crop yields. Because of 

the diminishing marginal effects, central estimates are only valid at the marginal extent. In 

particular, we must be cautious about projecting the potential effects on agricultural production 

too far away in areas with intensive growth of wind power capacity. 

 

5.3 Validity of instrumental variables and falsification test 

The above analyses rely heavily on the validity of the instrumental variables. The first condition 

is that FWC needs to be correlated with the development of wind farms, which is seemingly 

plausible. Of the two components that construct the instrumental variables, wind power class 

measures wind resources available for commercial wind turbines, and non-air-hazard ratio 

determines the share of potential wind turbine projects that can move forward to construction. By 

using FWC rather than raw wind power class, the first-stage predictions have been largely 

enhanced, since some windy areas receive low scores for the possibility of wind energy 

development due to aviation safety restrictions. The results from the first-stage regression are 

illustrated in figures 4(a) and 4(b) for wind capacity density and wind area ratio (25 km), 
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respectively. Since only a few wind farms were built before 2010, the coefficients of these earlier 

years are not significant. After that, the coefficients of FWC become positive, large and significant. 

The general increasing trends of the first-stage coefficients over the years fit the reality well. 

Appendix figures A3(a) and A3(b) illustrate the corresponding first-stage coefficients when using 

wind power class only. Although they are positive in later years as well, the standard errors are 

much larger than those with FWC, so most of the coefficients are at the edge of being significant 

or insignificant at the 5 percent level. 

Another key condition of any IV approach is the exclusion restriction assumption, which 

requires that FWC can affect crop yields solely through the development of wind farms. A simple 

and straightforward test of the exclusion restriction assumption is to see if the set of FWC has any 

explanatory power in the regression on crop yields directly before the installation of wind turbines 

nearby. Figures 5(a) and 5(b) use a subsample of farms located in counties that had not been 

affected by wind farms by 2012 for soybeans and corn, respectively. Since wind energy has been 

developed dramatically in recent years, I would lose too many observations, especially those in 

areas with high FWC, if I push the threshold year to later than 2012. Note that none of the 18 

estimates except one are significant at the 5 percent level. Moreover, these coefficients have both 

positive and negative signs across the years from 2003 to 2011. These results support the claim 

that FWC does not significantly affect crop yields before the installation of wind turbines, which 

implies that the exclusion restriction assumption holds for the IV approach. 

Another concern of this study is that other time-varying unobservables that have similar trends 

as the development of wind energy may result in spurious effects. A bootstrap-based permutation 

test is used to rule out any possible spurious effects. There are 102 counties in Illinois, each of 

which has a complete profile with FWC, wind capacity density, and wind area ratio (25 km and 
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10 km) from 2003 to 2017. To maintain the correlation between IVs and wind energy development 

variables in the first-stage as well as the development trends of wind energy in Illinois, the time 

series of these variables remain unchanged within a county’s profile. The permutation process then 

randomly assigns county wind profiles across farms. The results from 10,000 permutation repeats 

are reported in panel A of table 5, and show that my estimates are extremely unlikely to appear by 

randomly assigning wind development profiles. In panel B, I further restrict the permutation. The 

random assignments are now based on counties rather than farms, so farms originally from the 

same county receive the same random profile in each repeat. Note that there are only 102 counties 

in Illinois, and many of them share very similar wind energy development paths. Again, my 

preferred estimates are robust, especially considering the effects on both corn and soybean yields 

simultaneously.  

 

5.4 Mechanism investigation 

To investigate potential mechanisms that could lead to these findings, I directly examine the effects 

of wind energy on meteorological variables and farm operations. I find significant effects on local 

climate but do not detect measurable changes on farm operations after wind turbines are installed 

nearby. Therefore, my results suggest that the microclimate effects induced by the operation of 

wind turbines are likely resulting in the higher neighboring crop yields. 

Table 6 presents results from a simple panel regression based on equation (3). The wind 

energy development indicator is time-variant, and shifts from 0 to 1 if a sizable wind farm has 

been installed within 25 km of the centroid of a grid. The “donut” regressions reported in columns 

(2), (4), and (6) do not include grids with centroids located between 25 km and 40 km from any 

sizable wind farm built before the end of 2017. The estimates of the wind energy indicator within 
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25 km clearly show that the development of wind farms has significant effects on local 

meteorological variables. In particular, growing-season XDDs in grids within 25 km of a wind 

farm after its installation decrease by about 2.2 to 2.6 percent. Due to the nature of the PRISM data 

with weighted average observations from the closest 10 weather stations, the results presented in 

table 6 tend to be underestimated, and therefore, cannot be interpreted as rigorous scientific 

evidence of microclimate effects resulting from the development of wind farms. However, these 

estimates are strong enough to show that all three weather variables, GDD, XDD, and 

precipitation, are endogenous as right-hand-side explanatory variables in regression analyses for 

crop yields or farm operations.  

The FBFM farm-level data provides a unique opportunity to further investigate possible 

effects of wind energy on farm operations through two possible channels. First, crop growth 

conditions may more or less reflect the microclimate changes or ecosystem impacts due to sizable 

wind farms being nearby. Farmers, therefore, change their operations correspondingly based on 

their own observations without even knowing the causal link to wind energy. Another possible 

explanation is through the associated lease payments for land use to run wind turbines. Landlords 

may use the royalties to expand operating acres or purchase more inputs (Kaffine 2019). However, 

the results in table 7 suggest that wind farms do not change farm operations in general, or at least, 

most effects are too minimal to be statistically detected with the currently available dataset. The 

coefficients of wind capacity density in panel A or wind area ratio (25 km) in panel B are all 

insignificant, except one, on both corn and soybean acreage and different operating expenses.14 

                                                            
14 Several operating expenses are defined by FBFM (Krapf et al., 2017) as: 
Power and equipment includes depreciation, repairs, machine hire and lease, fuel and oil, and the farm share of 
expenses for electricity, telephone, and light vehicles. 
Labor includes hired labor plus family and operator’s labor, charged in 2016 at $3,800 per month. 



‐ 33 ‐ 
 

Therefore, involving these farm operating expenses as control variables in the regression analysis 

above seems acceptable.  

 

5.5 Effects on farm returns 

The next question is what these findings mean to farmers and policymakers. To answer this 

question, a proper accounting of the effects of wind turbines on net farm returns is of importance.  

 Table 8 reports estimates on total nonfeed costs and farm returns based on different 

definitions.15 Not surprisingly, the estimates of both wind capacity density in panel A and wind 

area ratio (25 km) in panel B suggest positive effects on per acre crop returns, per acre net farm 

income, per acre management returns, and labor and management income per operator, as shown 

in columns (2) to (5). On the other hand, the effects on total nonfeed costs, reported in column (1), 

are not significant, though they are positive. Similar to the interpretation of the results from table 

2, I multiply the coefficients by 0.092 MW of wind capacity per square mile, which is derived 

from an additional 50 MW of wind energy capacity built within a county. The estimate from 

column (2) in panel A of table 8 implies a $12.0 per acre, or 1.7 percent equivalently, increase in 

crop returns, which is right in between the preferred estimates of the yield effects on soybeans and 

corn as 1.3 and 2.4 percent, respectively.  

Although the net effects of wind energy on crop yields are modest, I find that most of the 

benefits from the yield increases are realized through higher labor and management returns since 

total operating expenses do not increase accordingly. Under the same conditions as above, the 

                                                            
15 Dependent variables in Table 9 are defined by FBFM (Krapf et al., 2017) as: 
Total nonfeed costs include cash operating expenses, adjustments for accrued expenses and farm produced inputs, 
depreciation, and charges for unpaid labor and interest including land charge. 
For others, please see footnotes 1 and 2. 
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coefficients from columns (3) to (5) in panel A suggest that net farm income increases by $6.84 or 

3.7 percent, management income increases by $6.23 or 12.5 percent, and annual per operator labor 

and management income increases by $23,858 or 26.0 percent, respectively. These results provide 

further support to the conclusion in the last section that the crop yield increases are not likely due 

to higher production inputs. Supposing farmers use royalties received from energy companies to 

expand farm production or purchase additional inputs after the installation of wind turbines, we 

would observe increases in crop yields along with higher operating expenses, and as a result, the 

net farm income or labor and management returns should not change significantly.  

Using a simple back-of-envelope calculation here, an additional 1,000 MW of wind power 

capacity installed in Illinois, which is about a 23 percent increase based on 4,332 MW installed by 

the end of 2017, and assuming the incremental capacity spreads evenly across the whole state, can 

increase wind capacity density by about 0.018 MW per square mile. Therefore, the estimated crop 

return increase is about $2.35 per acre based on the coefficient of column (2) in panel A, table 8. 

Considering only the areas cultivated with soybeans and corn in Illinois, which is 21.5 million 

acres in 2017, the total potential increase in crop returns is about $50.5 million per year. Similarly, 

the estimated annual increase in net farm income is about $28.8 million under the same condition. 

 

6. Conclusion  

This paper investigates the net impacts of sizable wind farms on local crop yields and agricultural 

activities at the farm level by using an innovative IV approach. I find that soybean and corn yields 

increase by roughly 1.3 and 2.4 percent, respectively, given an additional 50 MW of wind capacity 

installed in the same county. The induced microclimate changes are likely main contributors to 

these increases, as my results also show that the development of wind energy has significant 
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impacts on local meteorological variables but does not measurably change farm operations. 

Moreover, I also find that farms can obtain most benefits gained from the higher crop yields as 

labor and management returns. The aggregate benefits from this unanticipated positive externality 

of wind energy on agricultural production are fairly large in Illinois. 

The primary caveat of this study is that the specific location information of each farm below 

the county level is not available, though most observations are at the farm level. As a result, wind 

development variables have to be aggregated at the county level, which inevitably brings extra 

measurement error. Nonetheless, the techniques and the IV approach developed by this study can 

be easily transferred to a much finer level as long as the location details of farms are revealed. 

Another caveat is from the perspective of external validity. Since the microclimate effects of wind 

energy vary with local geographical and climate characteristics, spatial heterogeneity must exist. 

Kaffine’s (2019) estimates provide complementary evidence to my results that the direction of the 

net impacts should be consistent in general nationwide. However, more field experiments, like the 

CWEX project, are necessary to further explore more specific details of the impacts of wind 

turbines on crop growth.  
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Figures and Tables: 

 

Figure 1. Installed wind turbines and 10 or 25 km buffer areas to sizable wind farms, by the 
end of 2017  
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(a) Soybeans 

 

 

(b) Corn 

Figure 2. Box plots of FBFM soybean and corn yield observations, 2003‐2017 
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(a) Soybeans 

 
(b) Corn 

Figure 3. Yield differences in years before and after the first wind development 
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(a) Wind capacity density 
 

 

(b) Wind area ratio (25 km) 
Figure 4. First‐stage results with feasible wind class by year dummies as the instruments 
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(a) Soybeans 

 
(b) Corn 

Figure 5. Exclusion restriction test of the instruments on soybean and corn yields 
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Figure A1. Proposed wind turbine locations with determinations of “Hazard to Air Navigation” 
 
Source: Wind Turbine Location Data (updated 10/2018), Federal Aviation Administration 
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Figure A2. Wind power class map 

 
Source: National Renewable Energy Laboratory, U.S. Department of Energy 
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(a) Soybeans 
 

 

(b) Corn 
Figure A3. First‐stage results with wind power class by year dummies as the instruments 
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Table 1. Summary statistics 
 

2003 2005 2007 2009 2011 2013 2015 2017 

Panel A: All farms          

Corn yield (bushel per acre) 168.01 146.47 185.49 181.94 165.75 188.17 186.70 213.66 
(27.43) (27.03) (26.90) (22.94) (26.34) (25.96) (31.75) (31.12) 

Soybean yield (bushel per acre) 37.35 51.32 50.40 50.31 54.78 54.87 61.01 61.89 
(7.22) (7.73) (8.60) (8.14) (9.91) (8.78) (8.94) (8.69) 

Soil productivity rate 79.77 80.54 80.70 80.63 80.82 80.79 81.15 81.34  
(12.57) (12.45) (12.24) (12.39) (12.37) (12.29) (12.06) (11.94) 

Operating acres 720.13 774.89 816.51 834.97 891.93 889.35 947.86 997.58  
(587.64) (608.53) (652.21) (669.48) (930.76) (823.32) (889.63) (1119.42) 

Percent land owned 27.56 26.61 25.96 25.42 25.76 26.59 26.28 26.55  
(29.69) (29.09) (28.51) (28.15) (27.90) (27.94) (27.68) (27.63) 

Wind area ratio (25 km, percent) 0.00 2.28 4.50 17.74 30.46 44.00 44.19 44.54   
(8.21) (12.18) (26.32) (33.79) (39.15) (38.97) (39.36) 

Wind capacity density (MW/sqml) 0.000 0.001 0.002 0.038 0.089 0.133 0.133 0.140  
(0.008) (0.010) (0.092) (0.134) (0.160) (0.160) (0.167) 

N 3042 2987 2826 2767 2788 2719 2737 2449 
Panel B: Farms in counties with wind farms installed by the end of 2017      

Corn yield (bushel per acre) 174.39 148.46 191.71 186.21 172.26 192.49 189.60 220.69 
(20.82) (26.50) (20.07) (20.45) (23.53) (24.46) (30.77) (22.10) 

Soybean yield (bushel per acre) 35.89 51.84 52.89 51.72 56.91 56.50 62.42 63.13 
(6.56) (7.39) (6.24) (7.35) (8.76) (8.07) (7.99) (7.80) 

Soil productivity rate 83.87 84.41 84.43 84.57 84.83 84.84 84.99 85.17 
(9.09) (8.89) (8.82) (8.75) (8.69) (8.48) (8.46) (8.23) 

Operating acres 659.37 716.20 751.56 770.01 845.14 838.76 884.71 959.60 
(506.32) (555.80) (592.95) (621.17) (1028.25) (859.53) (825.66) (1259.80) 

Percent land owned 26.38 25.71 24.88 24.51 24.54 25.51 25.19 26.06 
(29.78) (28.83) (28.18) (28.00) (27.47) (27.34) (27.08) (27.59) 

Wind area ratio (25 km, percent) 0.00 3.65 7.29 27.15 46.98 67.50 68.13 69.71 
(10.15) (14.84) (29.07) (32.98) (30.62) (29.90) (29.58) 

Wind capacity density (MW/sqml) 0.000 0.002 0.002 0.062 0.145 0.215 0.217 0.232 
(0.010) (0.013) (0.110) (0.145) (0.154) (0.153) (0.157) 

N 1835 1862 1743 1721 1715 1684 1681 1476 

 
Note: Standard deviations appear in parenthesis. 
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Table 2. Effects of wind farms on soybean and corn yields, 2003‐2017 
 yield - OLS ln(yield) - OLS yield - 2SLS ln(yield) - 2SLS 
 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) 

Panel A: Soybeans         

Wind capacity density  
(MW/sqmi) 

5.434***  0.0979*** 9.668*** 0.137*** 
(1.733)  (0.0319) (3.079) (0.0502) 

Wind area ratio  
(25 km, %) 

0.0229*** 0.000403*** 0.0441*** 0.000716***  
(0.00701) (0.000130) (0.0112) 

 
(0.000193) 

Observations 37924 36333 37924 36333 37924 36333 37924 36333 
Adjusted R2 0.669 0.667 0.646 0.644 0.668 0.665 0.646 0.644 
Panel B: Corn      

Wind capacity density 
(MW/sqmi) 

4.200 
 

0.0323 31.88** 0.266** 
(5.973) 

 
(0.0476) (15.93) (0.124) 

Wind area ratio  
(25 km, %) 

 
0.0265 0.000190 0.123** 

 
0.00110**  

(0.0279) (0.000207) (0.0567) 
 

(0.000460) 

Observations 38853 37211 38853 37211 38853 37211 38853 37211 
Adjusted R2 0.726 0.727 0.629 0.630 0.723 0.725 0.624 0.626 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Farm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Farm characteristics Yes Yes Yes Yes Yes Yes Yes Yes 

 
Note: Farm characteristics include farm size (w/ quadratic term), soil productivity rate (w/ quadratic term), farm type, 
percentage of land irrigated, percentage of feed fed, share of land ownership (owned, crop shared, and cash rented). 
Robust standard errors (in parentheses) are clustered at the county level. Asterisks ***, **, and * indicate significance 
at the 1%, 5%, and 10% levels, respectively. 
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Table 3. Robustness checks of effects of wind farms on soybean and corn yields, 2003‐2017 
 ln(yield) – 2SLS 
 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) 

Panel A: Soybeans         

Wind capacity density 
(MW/sqmi) 

0.138*** 
 

0.132*** 0.139*** 0.137*** 
(0.0500) (0.0459) (0.0501) (0.0515) 

Wind area ratio  
(25 km, %) 

0.000721*** 0.000696*** 0.000731*** 0.000532***  
(0.000194) (0.000174) (0.000192) 

 
(0.000163) 

GDD       0.00238*** 0.00240*** 
       (0.000275) (0.000279) 
GDD2       -0.000000729*** -0.000000735*** 
       (7.84e-08) (7.86e-08) 
Precipitation       0.00132*** 0.00133*** 
       (0.000148) (0.000147) 
Precipitation2       -0.000000974*** -0.000000977*** 
       (0.000000106) (0.000000104) 

Observations 37926 36335 37918 36327 37924 36333 37924 36333 
Adjusted R2 0.646 0.643 0.654 0.651 0.648 0.645 0.667 0.665 
Panel B: Corn      

Wind capacity density 
(MW/sqmi) 

0.261** 0.263** 0.274** 0.221** 
(0.122) (0.114) (0.121) (0.108) 

Wind area ratio  
(25 km, %) 

0.00109** 0.00110** 0.00114** 0.000876** 
(0.000461) (0.000422) (0.000447) (0.000406) 

GDD       0.00328*** 0.00317*** 
       (0.000388) (0.000381) 
GDD2       -0.000000836*** -0.000000805*** 
       (9.66e-08) (9.84e-08) 
Precipitation       0.000278 0.000330 
       (0.000381) (0.000380) 
Precipitation2       -0.000000298 -0.000000326 
       (0.000000283) (0.000000281) 

Observations 38855 37213 38845 37203 38853 37211 38853 37211 
Adjusted R2 0.624 0.626 0.634 0.635 0.625 0.627 0.634 0.635 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Farm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Farm characteristics No No Yes Yes Yes Yes Yes Yes 
Year by characteristics No No Yes Yes No No No No 
Operating costs No No No No Yes Yes No No 

 
Note: Operating costs include fertilizer costs, crop costs (sum of fertilizer, pesticide, and seed), power and equipment 
costs, building costs, and labor costs. Robust standard errors (in parentheses) are clustered at the county level. 
Asterisks ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 
  



‐ 52 ‐ 
 

Table 4. Diminishing marginal effects of wind farms on crop yields, 2003‐2017 
 ln(yield) w/o quadratic terms ln(yield) w/ quadratic terms 
 (1) (2) (3) (4) (5) (6) 

Panel A: Soybeans       

Wind capacity density (MW/sqmi) 0.137*** 1.240 
(0.0502) (0.865) 

Wind area ratio (25 km, %) 0.000716*** 0.00490** 
(0.000193) (0.00217) 

 

Wind area ratio (10 km, %)   0.00144***   0.0130** 
   (0.000462)   (0.00605) 
[Wind capacity density]2    -3.058   
    (2.630)   
[Wind area ratio (25 km, %)]2     -0.0000480*  
     (0.0000242)  
[Wind area ratio (10 km, %)]2      -0.000353* 
      (0.000194) 
Observations 37924 36333 37143 37924 36333 37143 
Adjusted R2 0.646 0.644 0.645 0.626 0.630 0.621 
Panel B: Corn    

Wind capacity density (MW/sqmi) 0.266** 0.365 
(0.124) (0.671) 

Wind area ratio (25 km, %) 0.00110** 0.00814* 
(0.000460) (0.00429) 

Wind area ratio (10 km, %)   0.00257**   0.00705 
   (0.00112)   (0.00536) 
[Wind capacity density]2    -0.281   
    (1.981)   
[Wind area ratio (25 km, %)]2     -0.0000808*  
     (0.0000475)  
[Wind area ratio (10 km, %)]2      -0.000138 
      (0.000165) 
Observations 38853 37211 38076 38853 37211 38076 
Adjusted R2 0.624 0.626 0.627 0.625 0.602 0.625 
Year FE Yes Yes Yes Yes Yes Yes 
Farm FE Yes Yes Yes Yes Yes Yes 
Farm characteristics Yes Yes Yes Yes Yes Yes 

 
Note: Robust standard errors (in parentheses) are clustered at the county level. Asterisks ***, **, and * indicate 
significance at the 1%, 5%, and 10% levels, respectively. 
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Table 5. Permutation test 

 
Sum. of 10,000 

permutation repeats 
Est. coef. from 

preferred 
specification 

Est. coef. 
larger than % 

of repeats 

Larger than % of repeats 
for both corn and 

soybeans simultaneously  Mean Std. Dev. 
Panel A: Farms are randomly assigned county wind profile 

Est. of wind capacity density for soybeans -0.000526 0.0430559 0.137 99.9% 
100.0% Est. of wind capacity density for corn 0.000921 0.0526965 0.266 100.0% 

 
Est. of wind area ratio (25 km) for soybeans -0.0000058 0.0001512 0.000716 100.0% 

100.0% 
Est. of wind area ratio (25 km) for corn 0.0000060 0.0001873 0.00110 100.0% 
Panel B: Farms from the same original county are randomly assigned the same county wind profile 

Est. of wind capacity density for soybeans 0.0048198 0.1252781 0.137 88.5% 
97.5% Est. of wind capacity density for corn -0.0038088 0.1887545 0.266 94.4% 

 
Est. of wind area ratio (25 km) for soybeans 0.00000108 0.0004519 0.000716 95.9% 

98.6% 
Est. of wind area ratio (25 km) for corn -0.00000032 0.0006548 0.00110 97.5% 
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Table 6. Effects of wind farms on meteorological variables, 1998‐2017 
 ln(GDD) ln(GDD)-donut ln(XDD) ln(XDD)-donut ln(precip.) ln(precip.)-donut 
 (1) (2) (3) (4) (5) (6) 

If within 25 km of wind farms 0.00152*** 0.00168*** -0.0223*** -0.0258*** -0.0133*** -0.0173*** 
(0.000219) (0.000229) (0.00273) (0.00286) (0.00136) (0.00144) 

Observations 177660 157660 177651 157651 177660 157660 
Adjusted R2 0.997 0.997 0.992 0.992 0.975 0.975 
Year FE Yes Yes Yes Yes Yes Yes 
Grid FE Yes Yes Yes Yes Yes Yes 

 
Note: Robust standard errors (in parentheses) are clustered at the grid level. Asterisks ***, **, and * indicate 
significance at the 1%, 5%, and 10% levels, respectively. 
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Table 7. Effects of wind farms on farm operations 

 
Corn 

Acreage 
Soybean 
Acreage 

Fertilizer Crop Total 
Power and 
Equipment 

Building Labor 

 (1) (2) (3) (4) (5) (6) (7) 
Panel A: Wind capacity density       

Wind capacity density 
(MW/sqmi) 

-141.4 60.98 3.653 4.016 -12.39 6.013 -13.11 
(110.2) (100.3) (9.275) (16.13) (16.93) (9.411) (8.027) 

Observations 39248 39248 39248 39248 39248 39248 39248 
Adjusted R2 0.955 0.886 0.677 0.810 0.779 0.202 0.673 
Panel B: Wind area ratio     

Wind area ratio (25 km, %) -0.614 0.228 0.0120 0.0232 -0.0595 0.00365 -0.0555* 
(0.451) (0.398) (0.0351) (0.0611) (0.0625) (0.0385) (0.0310) 

Observations 37590 37590 37590 37590 37590 37590 37590 
Adjusted R2 0.975 0.931 0.679 0.813 0.781 0.193 0.674 
Year FE Yes Yes Yes Yes Yes Yes Yes 
Farm FE Yes Yes Yes Yes Yes Yes Yes 
Farm characteristics Yes Yes Yes Yes Yes Yes Yes 

 
Note: Robust standard errors (in parentheses) are clustered at the county level. Asterisks ***, **, and * indicate 
significance at the 1%, 5%, and 10% levels, respectively. 
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Table 8. Effects of wind farms on farm returns 

 
Total nonfeed 

costs  
(per acre) 

Crop returns 
(per acre) 

Net farm 
income  

(per acre) 

Management 
returns 

(per acre) 

Labor and 
management income 

(per operator) 
 (1) (2) (3) (4) (5) 

Panel A: Wind capacity density     

Wind capacity density (MW/sqmi) 44.63 130.0** 74.31* 67.71* 259330.4*** 
(38.31) (59.99) (37.79) (37.86) (94440.4) 

Observations 36195 36195 36195 36195 36195 
Adjusted R2 0.797 0.842 0.360 0.330 0.522 
Panel B: Wind area ratio   

Wind area ratio (25 km, %) 0.183 0.561*** 0.324** 0.303** 991.8*** 
(0.143) (0.210) (0.139) (0.131) (326.1) 

Observations 34654 34654 34654 34654 34654 
Adjusted R2 0.795 0.843 0.353 0.321 0.519 
Year FE Yes Yes Yes Yes Yes 
Farm FE Yes Yes Yes Yes Yes 
Farm characteristics Yes Yes Yes Yes Yes 

 
Note: Robust standard errors (in parentheses) are clustered at the county level. Asterisks ***, **, and * indicate 
significance at the 1%, 5%, and 10% levels, respectively. 
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Table A1. The retention rates of FBFM enrollment, 2003 ‐ 2017 

Year 
Percent of farms enrolled in last year 

All farms Farms in counties with wind farms by the end of 2017 Difference 

2003 N/A N/A N/A 
2004 79.59 81.25 1.66 
2005 78.47 81.74 3.27 
2006 74.69 75.78 1.09 
2007 77.7 80.39 2.69 
2008 79.02 80.09 1.07 
2009 81.15 82.67 1.52 
2010 80.23 80.59 0.36 
2011 83.35 83.03 -0.32 
2012 83.32 83.91 0.59 
2013 80.68 82.17 1.49 
2014 82.24 83.73 1.49 
2015 81.75 82.56 0.81 
2016 80.12 79.18 -0.94 
2017 76.67 77.38 0.71 

 

 



‐ 58 ‐ 
 

Table A2. Robustness checks with dummy wind development indicator, 2003‐2017 
 (1) (2) (3) (4) 

Panel A: Soybeans     

1(Wc0) 0.0717*** 0.0709*** 0.0715*** 0.107* 
(0.0245) (0.0244) (0.0243) (0.0547) 

Observations 35749 35749 35749 35749 
Adjusted R2 0.641 0.642 0.644 0.645 
Panel B: Corn  

1(Wc0) 0.0692** 0.0689** 0.0708** 0.0748* 
(0.0327) (0.0324) (0.0321) (0.0418)  

Observations 36593 36593 36593 36593 
Adjusted R2 0.631 0.632 0.633 0.638 
Year FE Yes Yes Yes Yes 
Farm FE Yes Yes Yes Yes 
Farm characteristics No Yes Yes Yes 
Operating costs No No Yes No 
County specific linear time trend No No No Yes 

 

Note: Robust standard errors (in parentheses) are clustered at the county level. Asterisks ***, **, and * indicate 
significance at the 1%, 5%, and 10% levels, respectively. 
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