I. Chemistry of amino acids
 A. General amino acid structure

 ![Amino Acid Structure Image]

 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon.
 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group).
 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH.

II. Essential and nonessential amino acids
 A. Nonessential amino acids: can make the carbon skeleton
 1. From glycolysis.
 2. From the TCA cycle.
 B. Nonessential if it can be made from an essential amino acid.
 1. Amino acid "sparing".
 2. May still be essential under some conditions.
 C. Essential amino acids
 1. Branched chain amino acids (isoleucine, leucine and valine)
 2. Lysine
 3. Methionine
 4. Phenyalanine
 5. Threonine
 6. Tryptophan
D. Essential during rapid growth or for optimal health
 1. Arginine
 2. Histidine

E. Nonessential amino acids
 1. Alanine (from pyruvate)
 2. Aspartate, asparagine (from oxaloacetate)
 3. Cysteine (from serine and methionine)
 4. Glutamate, glutamine (from α-ketoglutarate)
 5. Glycine (from serine)
 6. Proline (from glutamate)
 7. Serine (from 3-phosphoglycerate)
 8. Tyrosine (from phenylalanine)

E. Nonessential and not required for protein synthesis
 1. Hydroxyproline (made postranslationally from proline)
 2. Hydroxylysine (made postranslationally from lysine)

III. Acidic, basic, polar, and hydrophobic amino acids

A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution
 1. Acidic amino acids contain a carboxyl group at the terminal carbon.
 2. Acidic amino acids: aspartic acid and glutamic acid

B. Basic amino acids: amino acids that can accept a hydrogen ion and thereby raise pH in an aqueous solution
 1. Basic amino acids contain an additional amino group.
 2. Basic amino acids: lysine, arginine, and histidine

C. Polar amino acids: amino acids polar, uncharged side groups
 1. Polar amino acids contain –OH, –NH$_2$, and –SH side groups.
 2. Polar amino acids: serine, threonine, asparagine, and glutamine

D. Hydrophobic amino acids: amino acids with hydrophobic side chains
 1. Hydrophobic amino acids contain –CH$_2$- chains (branched or unbranched) or just a terminal –CH$_3$ group.
2. Hydrophobic amino acids: alanine, valine, isoleucine, leucine, methionine, phenylalanine, proline, and tryptophan

Table 4.1. Essential and Nonessential Amino Acids

<table>
<thead>
<tr>
<th>Essential amino acids<sup>a</sup></th>
<th>Aromatic AAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch Chain AAs</td>
<td>Aromatic AAs</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nonessential amino acids<sup>b</sup></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a G, glucogenic; K, ketogenic; G.K, both.
^b May only be required in infancy.
^c Produced from essential amino acids: phe → tyr; met → cys.
IV. Chemistry of proteins

A. Peptides and polypeptides

1. Peptide – amino acid chain containing 50 or fewer amino acids

 Tetrapeptide containing valine, glycine, serine, and alanine

 Insulin contains two peptide chains, the A chain (21 amino acids) and the B chain (30 amino acids), linked by two sulfhydryl bonds. Insulin is considered the standard cutoff size for proteins.

2. The peptide bond
 a. The carboxyl group from one amino acid donates its –OH group to the H from the amino group of a second amino acid.
 b. H₂O is released and a labile peptide bond is formed.
 c. Successive addition of amino acids forms peptides.
B. Protein structures

1. α-Helix

 Helical formation allows intrachain hydrogen bonds extending between the hydrogen atom attached to the electronegative nitrogen of one peptide bond and the carbonyl oxygen of the third amino acid beyond it.
2. β-Pleated sheets
Side-by-side polypeptide chains in the β-conformation are arranged in *pleated sheets*, which are cross-linked by interchain hydrogen bonds. All peptide bonds participate in this cross-linking and therefore give the structure great stability.

3. Orders of structure
a. Primary – amino acid sequence of a protein or peptide
b. Secondary – twisting of a protein or peptide; the α-helix
c. Tertiary – folding of a protein or peptide; e.g. myoglobin
d. Quaternary – association of multiple protein subunits; e.g. hemoglobin, β-pleated sheets
Important structures to remember

Pyruvate

Alanine

Serine

Oxaloacetate

Aspartate

Asparagine

α-Ketoglutarate

Glutamate

Glutamine