I. Common Saturated Fatty Acids

<table>
<thead>
<tr>
<th>NO. OF CARBONS</th>
<th>COMMON NAME</th>
<th>GENEVA NAME</th>
<th>STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Butyric</td>
<td>Tetanoic</td>
<td>CH₃(CH₂)₂COOH</td>
</tr>
<tr>
<td>6</td>
<td>Caproic</td>
<td>Hexanoic</td>
<td>CH₃(CH₂)₄COOH</td>
</tr>
<tr>
<td>8</td>
<td>Caprylic</td>
<td>Octanoic</td>
<td>CH₃(CH₂)₆COOH</td>
</tr>
<tr>
<td>10</td>
<td>Capric</td>
<td>Decanoic</td>
<td>CH₃(CH₂)₈COOH</td>
</tr>
<tr>
<td>12</td>
<td>Lauric</td>
<td>Dodecanoic</td>
<td>CH₃(CH₂)₁₀COOH</td>
</tr>
<tr>
<td>14</td>
<td>Myristic</td>
<td>Tetradecanoic</td>
<td>CH₃(CH₂)₁₂COOH</td>
</tr>
<tr>
<td>16</td>
<td>Palmitic</td>
<td>Hexadecanoic</td>
<td>CH₃(CH₂)₁₄COOH</td>
</tr>
<tr>
<td>18</td>
<td>Stearic</td>
<td>Octadecanoic</td>
<td>CH₃(CH₂)₁₆COOH</td>
</tr>
<tr>
<td>20</td>
<td>Arachidic</td>
<td>Eicosanoic</td>
<td>CH₃(CH₂)₁₈COOH</td>
</tr>
</tbody>
</table>

(You will need to know the common names for fatty acids.)

II. Common Dietary Unsaturated Fatty Acids

One Double Bond - monounsaturated

16C Palmitoleic acid cis-9-Hexadecenoic
 CH₃(CH₂)₅CH=CH(CH₂)₇COOH

18C Oleic acid cis-9-Octadecenoic
 CH₃(CH₂)₇CH=CH(CH₂)₇COOH

Two cis-Double Bonds - polyunsaturated

18C Linoleic acid cis-9,12-Octadecadienoic
 CH₃(CH₂)₄CH=CH-CH₂-CH=CH(CH₂)₇COOH

Two Conjugated Double Bonds

18C Conjugated linoleic acid cis-9,trans-11-Octadecadienoic
 CH₃(CH₂)₄CH₂-CH=CH-CH=CH(CH₂)₇COOH

Three Double Bonds

18C α-Linolenic acid cis-9,12,15-Octadecatrienoic
 CH₃CH₂-CH=CH-CH₂-CH=CH-CH₂-CH=CH(CH₂)₇COOH
Some important structures

\[
\text{CH}_3-\text{CH}-(\text{CH}_2)_n-\text{CH}_2-\text{COOH}
\]

Fatty acid (general)

COOH Palmitic acid (C 16:0)

COOH Stearic acid (C 18:0)

COOH Oleic acid (C 18:1)

COOH Arachidonic acid (C 20:4)
trans-10, cis-12 conjugated linoleic acid (A), cis-9, trans-11 conjugated linoleic acid (B), and cis-9, cis-12 linoleic acid (C).

III. Melting points
 A. Increased chain length
 1. Acetic acid (smallest fatty acid) is anomalous because of polarity.
 2. With increased chain length (> 3 carbons), melting point increases.

 B. Increased double bonds
 1. As cis-double bonds increase, melting point decreases.
 2. trans-double bonds do not cause a kink in the molecule, so have less effect on melting point.
C. Fatty Acid Crystals

1. Crystals of oleic acid (at right) have a highly ordered structure.
2. The cis double bonds are tilted in opposite directions to the plane of the molecules.
3. This configuration provides maximum van der Waals forces.